Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T14:29:37.945Z Has data issue: false hasContentIssue false

Infrared Dielectric Properties of In1-xGaxAs Epilayers on InP (100)

Published online by Cambridge University Press:  01 February 2011

N. L. Rowell
Affiliation:
National Research Council, Ottawa, Ontario, Canada K1A 0R6
G. Yu
Affiliation:
National Research Council, Ottawa, Ontario, Canada K1A 0R6
D. J. Lockwood
Affiliation:
National Research Council, Ottawa, Ontario, Canada K1A 0R6
P. J. Poole
Affiliation:
National Research Council, Ottawa, Ontario, Canada K1A 0R6
Get access

Abstract

The concentration dependence of optical phonons in strained In1-xGaxAs epilayers grown on InP (100) by chemical beam epitaxy has been characterized with oblique angle polarized far-infrared reflectivity measurements. In this powerful method, the reflectance spectra contain sharp Berreman peaks exactly at the optical phonon frequencies. For radiation polarized in the plane of incidence (p-polarized), peaks for both the TO and LO phonons were observed. For s-polarization only the TO modes were observed. For heavily doped substrates the TO film phonons were observed as reflectance minima, whereas for lightly doped substrates they were seen as maxima. The measured spectra were curve resolved to separate the effects of the various modes which included GaAs-like longitudinal and transverse optic (LO and TO), a disorder induced, and InAs-like LO and TO phonons. The dielectric response function and phonon frequency dependences for all modes were obtained versus Ga fraction for x from 0.25 to 0.75 and the latter showed a quadratic dependence on x over this range. The effects of strain on the phonon frequencies could then be evaluated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearsall, T. P., Ed., GaInAsP Alloy Semiconductors (Wiley, New York, 1982), pp. 61 and 87.Google Scholar
2. Pizani, P. S., Boschi, T. M., and Lanciotti, F. Jr, Groenen, J. and Carles, R., Maigne, P. and Gendry, M., Appl. Phys. Lett. 72, 436 (1998).Google Scholar
3. Brodsky, M.H. and Lucovsky, G., Phys. Rev. Lett. 21, 990 (1968).Google Scholar
4. Yamazaki, S., Ushirokawa, A., and Katoda, T., J. Appl. Phys. 51, 3722 (1980).Google Scholar
5. Feng, Z. C., Allerman, A. A., Barnes, P. A., and Perkowitz, S., Appl. Phys. Lett. 60, 1848 (1992).Google Scholar
6. Estrera, J. P., Stevens, P. D., Glosser, R., Duncan, W. M., Kao, Y. C., Liu, H. Y., and Beam, E. A., Appl. Phys. Lett. 61, 1927 (1992).Google Scholar
7. Rowell, N. L., Shin, H. K., Lockwood, D. J., and Poole, P. J., J. Appl. Phys. 92, 629 (2002).Google Scholar
8. Yu, G., Rowell, N. L., Lockwood, D. J., and Poole, P. J., Appl. Phys. Lett. 81, 2175 (2002).Google Scholar
9. Berreman, D.W., Phys. Rev. 130, 2193 (1963).Google Scholar
10. Barker, A. S., in “Far Infrared Properties of Solids” (Mitra, S.S. and Nudelman, S. eds.), p. 247, Plenum, New York, 1970.Google Scholar
11. Grosse, P., Harbecke, B., Heinz, B., Jantz, W., and Maier, M., Appl. Phys. A 50, 7 (1990).Google Scholar
12. Sirenko, A.A., Bernhard, G., Golnik, A., Clark, A.M., Hao, J., Si, W., Xi, X.X., Nature 404, 373 (2000).Google Scholar
13. Popovic, Z. V., Cantarero, A., Camacho, J., Milutinovi, A., Latinovi, O., and Gonzalez, L., J. Appl. Phys. 88, 6382 (2000).Google Scholar
14. Yu, G., Ishikawa, H., Umeno, M., Egawa, T., Watanaba, J., Soga, T., and Jimbo, T., Appl. Phys. Lett. 73, 1472 (1998).Google Scholar
15. Rowell, N.L. and Wang, E.A., Applied Optics 35, 2927 (1996).Google Scholar
16. Pickering, C., Journal of Electronic Materials 10, 901 (1981).Google Scholar
17. Kuhl, J. and Bron, W. E., Solid State Commun. 49, 935 (1984).Google Scholar
18. Bhatt, A. R., Kim, K. W., and Stroscio, M. A., J. Appl. Phys. 76, 3905 (1994).Google Scholar
19. Ganikhanov, F., and Vallee, F., Phys. Rev. B 55, 15614 (1997).Google Scholar
20. Goncharenko, A. V., Gorea, O. S., Dmitruk, N. L., Mikhailik, A. A., and Romanyuk, V. R., Tech. Phys. 46, 968 (2001).Google Scholar
21. Shin, H. K., Lockwood, D. J., and Poole, P. J., J. Appl. Phys. 77, 229 (2000).Google Scholar
22. Kim, O. K., and Spitzer, W. G., J. Appl. Phys. 50, 4362 (1979).Google Scholar
23. Lucovsky, G. and Chen, M.F., Solid State Comm. 8, 1397 (1970).Google Scholar
24. Pearsall, T. P., Carles, R., and Portal, J. C., Appl. Phys. Lett. 42, 436 (1983).Google Scholar
25. Borroff, R., Merlin, R., Chin, A., and Bhattacharya, P. K., Appl. Phys. Lett. 53, 1652 (1988).Google Scholar