Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T23:08:01.437Z Has data issue: false hasContentIssue false

Influence of the Surface Depletion Layer on the Photoetching Rate at Growth Striations in Lec GaAs.

Published online by Cambridge University Press:  28 February 2011

C. Frigeri
Affiliation:
CNR-MASPEC Institute, via Chiavari 18/A, 43100 Parma, Italy
J. L. Weyher
Affiliation:
Catholic University, RIM, Toernooiveld, 6525 ED Nijmegen, The Netherlands
L. Zanotti
Affiliation:
CNR-MASPEC Institute, via Chiavari 18/A, 43100 Parma, Italy
Get access

Abstract

Quantitative energy-dependent EBIC measurements have been used to calibrate the photoetching rate in HF-CrO3 aqueous solutions (DSL method: Diluted Sirtl-like etching with the use of Light) as a function of dopant concentration in LEC grown n-type GaAs samples containing growth striations. The relative DSL etching rate depends on the width of the surface depletion region associated with the semiconductor-etching solution interface, i. e. greater etch rates correspond to smaller dopant concentrations. These results are in agreement with the electrochemical model of GaAs etching in the DSL etching system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Witt, A. F., Lichtensteiger, M., and Gatos, H. C., J. Electrochem. Soc. 120, 1119 (1973).Google Scholar
2. Weyher, J. L. and Ven, J. van de, J. Crystal Growth 63, 285 (1983).Google Scholar
3. Ven, J. van de, Weyher, J. L., Meerakker, J. E. A. M. van den, and Kelly, J. J., J. Electrochem. Soc. 133, 799 (1986).Google Scholar
4. Weyher, J. L. and Ven, J. van de, J. Crystal Growth 78, 191 (1986).CrossRefGoogle Scholar
5. Frigeri, C., 5th Oxford Conference on Microscopy of Semiconducting Materials 1987, Inst. Phys. Conf. Ser. B7, 745 (1987).Google Scholar
6. Sze, S. M., Physics of Semiconductor Devices, J. Wiley, New York (1981), Ch. 5.Google Scholar
7. Wu, C. J. and Wittry, D.B., J. Appl. Phys. 49, 2827 (1978).Google Scholar
8. Tarricone, L., Frigeri, C., Gombia, E., and Zanotti, L., J. Appl. Phys. 60, 1745 (1986).Google Scholar
9. Kelly, J. J., Ven, J. van de, and Meerakker, J. E. A. M. van den, J. Electrochem. Soc. 12, 3026 (1985).Google Scholar
10. Ven, J. van de, Meerakker, J. E. A. M. van den, and Kelly, J. J., J. Electrochem. Soc. 132, 3020 (1985).Google Scholar
11. Meerakker, J. E. A. M., Kelly, J. J., and Notten, P. H. L., J. Electrochem. Soc. 132, 638 (1985).CrossRefGoogle Scholar
12. Rhoderick, E. H., Metal-Semiconductor Contacts, Clarendon Press, Oxford (1978).Google Scholar
13. Casey, H. C. Jr, Miller, B. I., and Pinkas, E., J. Appl. Phys. 44, 1281 (1973).Google Scholar