Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T06:00:55.770Z Has data issue: false hasContentIssue false

Influence of the as and BF2 Junction Implantation on Stress Induced Defects During Ti- and Co/Ti-Silicidation

Published online by Cambridge University Press:  10 February 2011

A. Steegen
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven
H. Bender
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven
I. De Wolf
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven Belgium ° INSYS, Katholieke Universiteit Leuven, Belgium
Get access

Abstract

When scaling down the MOS technology, the increasing local mechanical stress induced during the Ti- and Co/Ti silicidation can exceed the critical shear stress on the {111}<110> active glide system in the silicon substrate. This results in the heterogeneous nucleation of 60° dislocations in the silicon substrate underneath the silicide line. In the case of an undoped silicon substrate, these dislocations nucleate at the edge of the silicide lines and are parallel with the [110] oriented line edge. This paper will investigate the effects of As and BF2 junction implantation and implantation defects on the stress developed during the silicidation reaction and on the nucleation and growth of the stress induced 60° dislocations in the silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Steegen, A., Maex, K., De Wolf, I., 1998 Symp. On VLSI Technology, pp.200201, 1998.Google Scholar
[2] Badenes, G., Rooyackers, R., De Wolf, I., Deferm, L., Solid State Devices and Materials, pp.4648, 1996.Google Scholar
[3] Steegen, A., De Wolf, I., Maex, K., Material Res. Society, Spring 1998.Google Scholar
[4] Timoshenko, S. P., Goodier, J.N., Theory of elasticity, 3rd., pp. 19, 1970.10.1115/1.3408648Google Scholar
[5] De Wolf, I., Semicond. Sci. Tech., Vol.11, pp.139154, 1996.10.1088/0268-1242/11/2/001Google Scholar
[6] Steegen, A., De Wolf, I., Maex, K., Journal of Applied Physics, to be published.Google Scholar
[7] Hornstra, J., J. Phys. Chem. Solids, Vol.5, pp.129141, 1958.10.1016/0022-3697(58)90138-0Google Scholar
[8] Vanhellemont, J., Amelinckx, S., J. Appl. Phys., Vol.61(6), pp.2169, 1987.Google Scholar
[9] Kolbesen, B.O., Strunk, H.P., VLSI Electronics Microstructure Science, Vol. 12, pp. 143, 1985.Google Scholar
[10] Hu, S.M., Klepner, S.P., Schwenker, P.O., Sito, D.K., J. Appl. Phys., Vol.47, pp.4098, 1976.10.1063/1.323269Google Scholar
[11] Alexander, H., Dislocations in Solids, ed. Nabarro, F.R.N., Vol.7, chapter 35, 1986.Google Scholar
[12] Jones, K.S., Prussin, S., Weber, E.R., Appl. Phys. A45, pp. 134, 1988.10.1007/BF00618760Google Scholar