Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-27T22:53:14.705Z Has data issue: false hasContentIssue false

Influence of Substrate Temperature on the Properties of A-Si:H P-Layers Obtained from Trimethylboron

Published online by Cambridge University Press:  16 February 2011

J. Puigdollers
Affiliation:
Universitat de Barcelona, Departament de Física Aplicada i Electrónica, Barcelona, Avda, Diagonal, 647. E-08028 - Barcelona, Spain
J.M. Asensi
Affiliation:
Universitat de Barcelona, Departament de Física Aplicada i Electrónica, Barcelona, Avda, Diagonal, 647. E-08028 - Barcelona, Spain
J. Bertomeu
Affiliation:
Universitat de Barcelona, Departament de Física Aplicada i Electrónica, Barcelona, Avda, Diagonal, 647. E-08028 - Barcelona, Spain
J. Andreu
Affiliation:
Universitat de Barcelona, Departament de Física Aplicada i Electrónica, Barcelona, Avda, Diagonal, 647. E-08028 - Barcelona, Spain
J.C. Delgado
Affiliation:
Universitat de Barcelona, Departament de Física Aplicada i Electrónica, Barcelona, Avda, Diagonal, 647. E-08028 - Barcelona, Spain
Get access

Abstract

a-Si:H p-layers doped by trimethylboron (TMB) were obtained by PECVD in a monochamber reactor with a rotating substrate holder. The influence of the substrate temperature (Ts) on the film properties was systematically studied for two different doping gas concentrations. The incorporation of boron, hydrogen and carbon was studied by Secondary Ion Mass Spectrometry (SIMS). Optical properties were determined by means of Photothermal Deplection Spectroscopy (PDS) and optical transmission. Dark conductivity (aj and activation energy (Eact) were measured electrically. Our results show that Σd has a marked dependence on substrate temperature, although boron atom concentration depends only slightly on Ts. The optical gap for samples obtained at the higher concentration also depends on Ts and its dependence is related to the hydrogen content, as boron content does not change. P-i-n diodes were obtained with the p-layer deposited from TMB.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roca i Cabarrocas, P., Kumar, S. and Drevillon, B., J. Appl. Phys. 66 3286 (1989).Google Scholar
2. Tarui, H., Matsuyama, T., Okamoto, S., Dohjoh, H., Hishikawa, Y., Nakamura, N., Tsuda, S., Nakano, S., Ohnishi, M., and Kuwano, Y., Jpn. J. Appl. Phys. 28 2436 (1989).Google Scholar
3. Shen, D.S., Chatam, H. and Schropp, R.E.I. in AMorphous Silicon Technology, edited by Taylor, P.C., LeComber, P.G., Hamakawa, Y. and Madan, A. (Mater. Res. Soc. Proc. 192, San Francisco, CA, 1990) pp. 523528.Google Scholar
4. Tabuchi, K., Yamada, A., Konagai, M. and Takahashi, K., Jpn. J. Appl. Phys. 30 2742 (1991).Google Scholar
5. Lloret, A., Wu, Z.Y., Thèye, M.L., El Zawawi, I., Siéfert, J.M. and Equer, B., Appl. Phys. A 55 573 (1992).Google Scholar
6. Bertomeu, J., Asensi, J.M., Puigdollers, J., Andreu, J. and Morenza, J.L., Vacuum 44 129 (1993).Google Scholar
7. Perrin, J., Roca i Cabarrocas, P., Allan, B. and Friedt, J.M., Jpn. J. Appl. Phys. 27 2041 (1988).Google Scholar
8. Gorn, M., Lechner, P., Mohring, H.-D., Rubel, H., Scheppat, B. and Kniffler, N., Phil Mag. B, 64101 (1991).Google Scholar
9. Wagner, I., Stasiewski, N., Abeles, B. and lanford, W.A., Phys. Rev. B 28 249 (1982).Google Scholar
10. Tsai, C.C., Phys. Rev. B 19 2041 (1979).Google Scholar