Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T22:56:49.138Z Has data issue: false hasContentIssue false

Influence of Substrate Annealing Temperature upon Deep Levels in n-Type 4H SiC

Published online by Cambridge University Press:  17 March 2011

Martin E. Kordesch
Affiliation:
Department of Physics and Astronomy, Athens OH 45701
Florentina Perjeru
Affiliation:
Department of Physics and Astronomy, Athens OH 45701
R. L. Woodin
Affiliation:
Extreme Devices, Inc., Austin TX 78744
Get access

Abstract

The evolution of deep levels that depend upon annealing temperature is investigated for n-type 4H SiC-Ni Schottky barriers. Several samples, cut from the same wafer, have been left unheated or annealed at 400°C, 700°C and 900°C, in air. Deep level transient spectroscopy (DLTS) has been used to investigate deep levels in all four sets of samples. Electron traps with activation energies EC-ET = 0.19 to 0.5 eV are observed, as well as a hole trap in the sample annealed at 900°C at energy ET-EV = 0.14 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hingorani, N. G. and Stahlkopf, K. E., “High-Power Electronics,” Scientific American, vol. 269, pp. 7885, (1993).Google Scholar
2. Bhatnagar, M. and Baliga, B. J., “Comparison of 6H-SiC, 3C-SiC, and Si for Power Devices,” IEEE Transactions on Electron Devices, vol. 40, pp. 645655, (1993).Google Scholar
3. Baliga, B. J., “Power Semiconductor Devices for Variable-Frequency Drives,” Proceedings of the IEEE, vol. 82, pp. 11121122, (1994).Google Scholar
4. Trew, R. J., Yan, J.-B., and Mock, P. M., Proceedings of the IEEE, vol. 79, pp. 598620, (1991).Google Scholar
5. Pensl, G. and Choyke, W. J., Physica B, 185, p.264 (1993).Google Scholar
6. Frank, T., Troffer, T., Pensl, G., Nordell, N., Karlsson, S., and Schoner, A., Silicon Carbide, III-Nitrides and Related Materials, pp.681684 (1998).Google Scholar
7. Suttrop, W., Pensl, G., Lanig, P., Appl. Phys. A 51, p.231 (1990).Google Scholar
8. Mitchel, W.C., Perrin, R., Goldstein, J., Roth, M., Ahoujja, M., Smith, S.R., Evwaraye, A.O., Solomon, J.S., Landis, G., et al., Silicon Carbide and Related Materials, Pts.1&2, 264–2: 545548 (1998).Google Scholar
9. Ballandovich, V.S., Semiconductors 33 (11) pg 1118 (1999).Google Scholar
10. Ikeda, M., matsunari, H., and Tanaka, T., J. Lumin. 20 pg. 111 (1979).Google Scholar
11. Dalibor, T., Pensl, G., Yamamoto, T., Kimoto, T., Matsunami, H., Sridhara, S.G., Nishner, D. G., Devaty, R.P. and Choyke, W.J., Carbide, Silicon, III-Nitrides and Related Materials, pp.553556 (1998).Google Scholar