Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T10:01:38.852Z Has data issue: false hasContentIssue false

The Influence of Spontaneous and Piezoelectric Polarization on Novel AlGaN/GaN/InGaN Device Structures

Published online by Cambridge University Press:  10 February 2011

B. E. Foutz
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
M. J. Murphy
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
O. Ambacher
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
V. Tilak
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
J. A. Smart
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
J. R. Shealy
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
W. J. Schaff
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
L. F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

The strong spontaneous polarization and piezoelectric effects in the wurtzite IIInitride semiconductors lead to new possibilities for device design. In typical heterojunction field effect transistors these effects are used to create large electron concentrations at the AlGaN/GaN interface. However, we examine several other possible device structures which include heterojunctions of AlGaN, GaN, and InGaN. For example, we find the strong electric fields present in these structures allow us to create quantum wells greater than 1 eV deep. Both Ga-faced and N-faced materials are explored. The two-dimensional electron gas concentrations in these structures are found using a self-consistent 1-D Schrödinger-Poisson solver modified to incorporate the effects of spontaneous and piezoelectric polarization. The boundary conditions at the heterojunction interfaces and at the surface and substrate are discussed in detail. Electron concentrations are compared with those obtained experimentally through capacitance-voltage and Hall effect measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B56, R10024 (1997).10.1103/PhysRevB.56.R10024Google Scholar
[2] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., and Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Reiger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222(1999).10.1063/1.369664Google Scholar
[3] Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Van Hove, J., and Redwing, J., Elec. Lett. 33, 1230(1997).10.1049/el:19970843Google Scholar
[4] Bykhovski, A. D., Gaska, R., Shur, M. S., Appl. Phys. Lett. 73, 3577(1998).10.1063/1.122829Google Scholar
[5] Wright, A. F., J. Appl. Phys. 82 2833 (1997).10.1063/1.366114Google Scholar
[6] Sala, F. D., Carlo, A. D., Lugli, P., Bernardini, F., Fiorentini, V., Scholz, R., Jancu, J.-M., Appl. Phys. Lett. 74, 2002(1999).10.1063/1.123727Google Scholar
[7] Tan, I- H., Snider, G. L., Chang, L. D., and Hu, E. L., J. Appl. Phys. 68 4071 (1990).10.1063/1.346245Google Scholar
[8] Wei, S., Zunger, A., Appl. Phys. Lett. 69, 2719(1996).10.1063/1.117689Google Scholar
[9] Murphy, M. J., Foutz, B. E., Chu, K., Hu, H., Yeo, W., Schaff, W. J., Ambacher, O., Eastman, L. F., Eustis, T. J., Dimitrov, R., Stutzmann, M., Rieger, W., MRS Internet J. Nitride Semicond. Res. 4S1, G8.4 (1999).10.1557/S1092578300003501Google Scholar