Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T12:50:19.230Z Has data issue: false hasContentIssue false

Influence of SiOx Capping Layer Quality on Impurity-Free Interdiffusion in GaAs/AlGaAs Quantum Wells

Published online by Cambridge University Press:  10 February 2011

P.N.K. Deenapanray
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, A.C.T. 0200, Australiapnk1O9@rsphysse.anu.edu.au
H.H. Tan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, A.C.T. 0200, Australiapnk1O9@rsphysse.anu.edu.au
C. Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, A.C.T. 0200, Australiapnk1O9@rsphysse.anu.edu.au
Get access

Abstract

We have investigated the influence of SiOx capping layer quality on impurity-free vacancy interdiffusion in GaAs/Al0.54Ga0.46As quantum wells. Dielectric layers were deposited by plasmaenhanced chemical vapor deposition, and properties of layers were changed by varying either the flow rate of silane or deposition temperature. The extent of intermixing in our samples is discussed in terms of the 0 content and incorporation of N in capping layers, and also on their porosity. We also report on the electrically active defects which are introduced in Si02 capped and annealed n-GaAs, and relate them to the intermixing process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deppe, D.G. and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar
2. Gontijo, I., Krauss, T., Marsh, J.H., Rue, R.M. De La, IEEE J. Quantum Electron. 30, 1189 (1994).Google Scholar
3. Bürkner, S., Maier, M., Larkins, E.C., Rothermound, W., O’Reilly, E.P., Ralston, J.D., J. Electron. Mater. 24, 805 (1995).Google Scholar
4. Li, G., Chua, S.J., Xu, S.J., Wang, X.C., Helmy, A. Saher, Ke, Mao-Long, Marsh, J.H., Appl. Phys. Lett. 73, 3393 (1998).Google Scholar
5. Cohen, R.M., Li, Gang, Jagadish, C., Burke, Patrick T., Gal, Michael, Appl. Phys. Lett. 73, 803 (1998).Google Scholar
6. Yuan, Shu, Kim, Yong, Jagadish, C., Burke, P.T., Dao, L.V., Gal, M., Chan, M.C.Y., Li, E.H., Zou, J., Cai, D.Q., Cockayne, D.J.H., Cohen, R.M., J. Appl. Phys. 83, 1305 (1998).Google Scholar
7. Tan, H.H., Williams, J.S., Jagadish, C., Burke, P.T., Gal, M., Appl. Phys. Lett. 68, 2401 (1996).Google Scholar
8. Cohen, R.M., Materials Science and Engineering R 20, 167 (1997).Google Scholar
9. Koteles, E.S., Elman, B., Melman, P., Chi, J.Y., Armiento, C.A., Opt. Quantum Electron. 23, S779–S787 (1991).Google Scholar
10. Helmy, A. Saher, Murad, S.K., Bryce, A.C., Aitchison, J.S., Marsh, J.H., Hicks, S.E., Wilkinson, C.D. W., Appl. Phys. Lett. 74, 732 (1999).Google Scholar
11. Helmy, A. Saher, Aitchison, J.S., Marsh, J.H., IEEE J. Select. Topics Quantum Electron. 4, 653, (1998).Google Scholar
12. Deenapanray, P.N.K., Tan, H.H., Lengyel, J., Durandet, A., Gal, M., and Jagadish, C., Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices, edited by Faraone, L., Dell, J.M., Fischer, T.A., Musca, C.A. and Nener, B.D. (IEEE Publishing, New Jersey, 1999), p. 361364.Google Scholar
13. Lang, D.V., J. Appl. Phys. 45, 3014 (1974).Google Scholar
14. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (Wiley Eastern, New Delhi, 1987), p.35.Google Scholar
15. Yeh, C. N., McNeil, L. E., Blue, L. J., Danieb-Race, T., J. Appl. Phys. 77, 4541 (1995).Google Scholar
16. Elman, B., Koteles, Emil S., Melman, P., Armiento, C. A., J. Appl. Phys. 66, 2104 (1989).Google Scholar
17. Chi, J.Y., Chen, X., Koteles, Emil S., Elman, B., Appl. Phys. Lett. 55, 855 (1989).Google Scholar
18. Li, E. H., Weiss, B. L., Chan, K. S., Phys. Rev. B 46, 15181 (1992).Google Scholar
19. Crank, J., in The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, 1975), p. 15.Google Scholar
20. Gontijo, I, Krauss, T, Marsh, J.H., Rue, R.M. De La, IEEE J. Quantum Electron. 30, 1189 (1994).Google Scholar
21. Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y., Markunas, R. J., J. Vac. Sci. Technol. A 4, 681 (1986).Google Scholar
22. Doolittle, L. R., Nucl. Instrum. Methods B 9, 344 (1985).Google Scholar
23. Pai, P. G., Chao, S. S., Takagi, Y., Lucovsky, G., J. Vac. Sci. Technol. A 4, 689 (1986).Google Scholar
24. Deenapanray, P.N.K., Tan, H.H., Cohen, M.I., Gaff, K., Petravic, M., Jagadish, C., unpublished.Google Scholar
25. Choi, W. J., Han, S. M., Shah, S. I., Choi, S. G., Woo, D. H., Lee, S., Kim, S. H., Lee, J. I., Kang, K. N., Cho, J., IEEE J. Selected Topics Quantum Electron. 4, 624 (1998).Google Scholar
26. Deenapanray, P.N.K., Tan, H.H., Fu, L., Jagadish, C., unpublished.Google Scholar
27. Deenapanray, P.N.K., Lengyel, J., Tan, H.H., Jagadish, C., Petravic, M., Durandet, A., and Williams, J.S. in Properties of Processing of Vapor-Deposited Coatings, edited by Johnson, R., Lee, Woo, Pickering, M. and Sheldon, B. (Mater. Res. Soc. Proc. 555, Pittsburg, PA, 1999), pp.197202.Google Scholar
28. Devine, R.A.B., J. Vac. Sci. Technol. A 6, 3154 (1988).Google Scholar
29. Ikoma, T., Mochizuki, Y., Jpn. J. Appl. Phys. 24, L935 (1985).Google Scholar
30. Bourgoin, J.C., Bardeleben, H.J. von, Stievenard, D., J. Appl. Phys. 64, R65 (1988).Google Scholar
31. Itoh, A., Usami, A., Kitagawa, A., Wada, T., Tokuda, Y., Kano, H., J. Appl. Phys. 69, 2238 (1991).Google Scholar
32. Kuzuhara, M., Nozaki, T., Kamejima, T., J. Appl. Phys. 66, 5833 (1989).Google Scholar