Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-07T22:20:41.467Z Has data issue: false hasContentIssue false

Influence of Hydrogen Dilution on Properties of Silicon Films Prepared by D.C. Saddle-Field Glow-Discharge: Observation of Microcrystallinity

Published online by Cambridge University Press:  01 February 2011

T. Allen
Affiliation:
Department of Physics, Geology and Astronomy, University of Tennessee at Chattanooga, Chattanooga, TN 37403U.S.A
I. Milostnaya
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
D. Yeghikyan
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
K. Leong
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
F. Gaspari
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
N.P. Kherani
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
T. Kosteski
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
S. Zukotynski
Affiliation:
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, CANADA, M5S 1A4
Get access

Abstract

In the D.C. saddle field glow discharge deposition the transition from amorphous to microcrystalline silicon thin films occurs when the silane concentration in the gas phase drops below 10%. We report here the results of Raman spectroscopy, SEM, TEM, and HRTEM studies of the film morphology. We estimate the average crystallite size to be in the range of 5 to 7 nm and the crystalline volume fraction of 25 to 35%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Street, R. A. (Ed.), Technology and Application of Amorphous Silicon, Springer-Verlag, New York (2000).Google Scholar
2. Allen, T., Gaspari, F., Kherani, N.P., Kosteski, T., Leong, K., Milostnaya, I., Yeghikyan, D., Zukotynski, S., Mat. Res. Soc. Symp. Proc., 744 (2003) M5.22.Google Scholar
3. Iqbal, Z., Veprek, S., J. Phys. C., 15 (1982) 377.Google Scholar
4. Veprek, S., Sarrot, F.-A., Iqbal, Z.. Phys. Rev. B, 36 (1987) 3344.Google Scholar
5. Yue, G., Lorentzen, J.D., Lin, J. et al, Appl. Phys. Lett, 75 (1999) 492.Google Scholar
6. Veprek, S., Iqbal, Z., Oswald, H. R., Sarrot, F.-A., et al., Solid State Commun., 39 (1981) 509.Google Scholar
7. Voutsas, A. T., Hatalis, M. K., Boyce, J, Chiang, A.. J. Appl. Phys, 78 (1995) 6999.Google Scholar
8. Bustaret, E., Hachicha, M. A., and Brunel, M.. Appl. Phys. Lett., 52 (1988) 1675.Google Scholar
9. Yue, G., Lorentzen, J. D., Lin, J., Han, D., Wang, Q.. Appl. Phys. Lett., 75 (1999) 492.Google Scholar
10. Milostnaya, I., Allen, T., Gaspari, F., Kherani, N.P., Yeghikyan, D., Roes, W.L., Kosteski, T. and Zukotynski, S., Mat. Res. Soc. Symp. Proc., 762 (2003) A6.15.Google Scholar