Hostname: page-component-7bb8b95d7b-fmk2r Total loading time: 0 Render date: 2024-09-11T11:12:12.175Z Has data issue: false hasContentIssue false

Influence of Cu film microstructure on MOCVD growth of BN

Published online by Cambridge University Press:  30 June 2015

Michael Snure
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH.
Shivashankar Vangala
Affiliation:
Solid State Scientific Corporation, Hollis NH.
Jodie Shoaf
Affiliation:
Wyle Laboratories, Inc., Wright-Patterson AFB, OH.
Jianjun Hu
Affiliation:
University of Dayton Research Institute, University of Dayton, Dayton, OH.
Qing Paduano
Affiliation:
Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH.
Get access

Abstract

Boron nitride is of great interest as a 2 dimensional (2D) insulator for use as an atomically flat substrate, gate dielectric and tunneling barrier. At this point the most promising and widely used approach for growth of mono-to-few layer BN is metal catalyzed chemical vapor deposition (CVD). Bulk Cu foil has been the most popular metal substrate for growth of h-BN and graphene, as such there are well developed processes for substrate preparation and growth. As an alternative thin Cu films deposited on an insulating substrate have some advantages over foil, including more uniform thermal contact with substrate heater, better mechanical stability, transfer free processing, and selective area growth. However, Cu films deposited on SiO2 present their own unique problems like Cu SiO2 stability and small Cu grain size. Here we present results on the growth on few-layer BN by metal organic chemical vapor deposition (MOCVD) on Cu thin films on SiO2/Si. We explore the effects of substrate preparation and annealing conditions on the Cu morphology in order to understand the impact on the BN. To minimize the effects of Cu SiO2 interdiffusion, we investigate the use of a Ni buffer layers. BN films were studied after transfer to SiO2/Si films using Raman and AFM to determine the impact of Cu film microstructure on the morphology of few layer BN films.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Taniguchi, T., Sato, T., Utsumi, W., Kikegawa, T., and Shimomura, O., Diam. Relat. Matter. 6, 1806 (1997).CrossRefGoogle Scholar
Tao, O, Yuanping, C., Yuee, X., Kaike, Y., Zhigang, B., and Jianxin, Z., Nanotechnology 21, 245701 (2010).CrossRefGoogle Scholar
Balandin, A. A., Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
Song, L., Ci, L., Lu, H., Sorokin, P. B., Jin, C., Ni, J., Kvashnin, A. G., Kvashnin, D. G., Lou, J., Yakobson, B. I., and Ajayan, P. M., Nano Lett. 10, 3209 (2010).CrossRefGoogle Scholar
Changgu, L., Xiaoding, W., Kysar, J. W., and Hone, J., Science 321, 385 (2008).Google Scholar
Michel, K. and Verberk, B., Phys. Status Solidi 246, 2802 (2009).CrossRefGoogle Scholar
Kim, K. K., Hsu, A., Jia, X., Kim, S. M., Shi, Y., Hofmann, M., Nezich, D., Rodriguez-Nieva, J. F., Dresselhaus, M., Placios, T., and Kong, J., Nano Lett. 12, 161 (2012).CrossRefGoogle Scholar
Ismach, A., Chou, H., Ferrer, D. A., Wu, Y., McDonnell, S., Floresce, C. H., Covacevich, A., Pope, C., Piner, R., Kim, M. J., Wallace, R. M., Colombo, L., and Ruoff, R. S., Nano 6, 6378 (2012).Google Scholar
Lu, J., Yeo, P. S. E., Zheng, Y., Xu, H., Gan, C. K., Sullivan, M. B., Neto, A. H. C., and Loh, K. P., J. Am. Chem. Soc. 135, 2368 (2013).CrossRefGoogle Scholar
Levendorf, M. P., Rulz-Vargas, C. S., Garg, S., and Park, J., Nano Lett. 9, 4479 (2009).CrossRefGoogle Scholar
Miler, D. L., Keller, M. W., Shaw, J. M., Rice, K. P., Keller, R. R., and Diederichsen, K. M., AIP Advances 3, 082105 (2013).CrossRefGoogle Scholar
Ndwandwe, O. M., Hlatshwayo, Q. Y., Pretorius Mater, R.. Chem. Phys. 92 487(2005).Google Scholar
Guo, N., Wei, J., Fan, L., Jia, Y., Liang, D., Zhu, H., Wang, K., Wu, D., Nanotechnology 23, 415605 (2012).CrossRefGoogle Scholar
Jintsugawa, O., Sakurba, M., Matsuura, T., and Murota, J., Surf. Interface Anal. 34, 456 (2002).CrossRefGoogle Scholar
Spizzirri, P. G., Fang, J-H., Rubanov, S., Gauja, E., and Prawer, S.. arXiv preprint arXiv:1002.2692 (2010).Google Scholar
Gorbachev, R. V., Riaz, I., Nair, R. R., Jalil, R., Britnell, L., Belle, B. D., Hill, E. W., Novoselov, K. S., Watanabe, K., Taniguchi, T., Geim, A. K., Blake, P., Small 7, 465 (2011).CrossRefGoogle Scholar
Geick, R., Perry, C. H., Rupprecht, G., Phys. Rev. 146, (1966) 543.CrossRefGoogle Scholar
Nemanich, R. J., Solin, S. A., Martin, R. M., Phys. Rev. B 23, 6348 (1981).CrossRefGoogle Scholar
Tay, R. Y., Griep, M. H., Mallick, G., Tsang, S. H., Singh, R. S., Tumlin, T., Teo, E. H. T., Karna, S. P., Nano Lett. 14, 839 (2014).CrossRefGoogle Scholar