Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T01:32:30.458Z Has data issue: false hasContentIssue false

In Situ Diagnostics of Nanomaterial Synthesis by Laser Ablation: Time-resolved Photoluminescence Spectra and Imaging of Gas-Suspended Nanoparticles Deposited for Thin Films

Published online by Cambridge University Press:  09 August 2011

D. B. Geohegan
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
A. A. Puretzky
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
A. Meldrum
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
G. Duscher
Affiliation:
MPI für Metallforschung, Institut für Werkstoffwissenschaft, Seestr. 92, D-70174 Stuttgart
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 odg@oml.gov
Get access

Abstract

The dynamics of nanoparticle formation by laser ablation into background gases are revealed by gated-ICCD photography of photoluminescence (PL) and Rayleigh-scattering (RS) from gas-suspended nanoparticles. These techniques, along with gated-spectroscopy of PL from isolated, gassuspended nanoparticles, permit fundamental investigations of nanomaterial growth, doping, and luminescence properties prior to deposition for thin films. Using the time-resolved diagnostics, particles unambiguously formed in the gas phase were collected on TEM grids. Silicon nanoparticles, 1-10 nm in diameter, were deposited following laser ablation into 1-10 TorrAror He. Three in situ PL bands (1.8, 2.6, 3.2 eV) similar to oxidized porous silicon were measured, but with a pronounced vibronic structure. Structureless photoluminescence bands were reproduced in the films (2.1, 2.7, 3.2 eV) only after standared annealing. The ablation of metal zinc into Ar/02 is also reported for the preparation of < 10 nm diameter hexagonal zincite nanocrystals, The particles were analyzed by bright field and Z-contrast TEM and high resolution EELS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilson, W. L., Szajowski, P. F., Brus, L.E., Science 262, 1242 (1993).Google Scholar
2. Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y.-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L.E., Brown, W.L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).Google Scholar
3. (a) Chiu, L.A., Seraphin, A. A., and Kolenbrander, K.D., J. Electronic Materials 23, 347 (1994). (b) E. Werwa, A. A. Seraphin, L.A. Chiu, C. Zhou, and K.D.Kolenbrander, Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
4. (a) El-Shall, M.S., Li, S., and Turkki, T., Graiver, D., Pemisz, U.C., Baraton, M.I., J.Phys. Chem. 99, 17805 (1995). (b) S. Li, S.J. Silvers, and M. S. El-Shall, J. Phys. Chem. B, 101, 1794 (1997).Google Scholar
5. Movtchan, I.A., Marine, W., Dreyfus, R.W., Le, H.C., Sentis, M., and Autric, M., Appl. Surf. Sci. 96–918, 251 (1996).Google Scholar
6. (a) Yoshida, T., Takeyama, S., Yamada, Y., and Mutoh, K., Appl. Phys. Lett. 68, 1772 (1996). (b) Y. Yamada, T. Orii, I. Umezu, S. Takeyama and T. Yoshida, Jpn. J. Appl. Phys. 35, 1361 (1996).Google Scholar
7. Makimura, T., Kunii, Y., and Murakami, K., Jpn. J. Appl. Phys., 35 4780 (1996).Google Scholar
8. (a) Pulsed Laser Deposition of Thin Films, Ed. by D.B., Chrisey and Hubler, G. K., (Wiley-Interscience Publisher), 1994., (b) D.H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, and C.M. Rouleau, Science 273, 898 (1996).Google Scholar
9. Yoshida, T., Yamada, Y., and Orii, T., Technical Digest of the International Electron Devices Meeting, San Francisco, CA, Dec. 8-11, 1996, IEEE.Google Scholar
10. Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Nature 384, 338 (1996).Google Scholar
11. Muramoto, J., Nakata, Y., Okada, T. and Maeda, M., Jpn. J. Appl. Phys. 36 L563 (1997).Google Scholar
12. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. 72,2987 (1998) and references cited therein..Google Scholar
13. Geohegan, D. B., Puretzky, A. A., Duscher, G., and Pennycook, S. J., Appl. Phys. Lett. 73, 438 (1998) and references cited therein.Google Scholar
14. van de Hulst, H.C.: Light Scattering by Small Particles (Dover Publications, New York, 1981).Google Scholar
15. Broad reviews are given by (a) P. M. Fauchet, J. Lumin. 70, 294 (1996). (b) Koch, F., Petrova-Koch, V., J. Non-Cryst. Solids 198–200, 846 (1996).Google Scholar
16. Kimura, K. and Iwasaki, S., Mat. Res. Soc. Proc., 452, 165 (1997).Google Scholar
17. Orii, T., Kaito, S., Matsuishi, K., Onari, S., and Arai, T., J. Phys. D: Condesn. Matter 9, 4483 (1997)1.Google Scholar
18. Brus, Louis, J. Phys. Chem. 98, 3575 (1994.Google Scholar