Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T09:54:26.437Z Has data issue: false hasContentIssue false

Impurity Free Vacancy Disordering Using Phosphorus Doped SiO2 and Pure SiO2 Caps

Published online by Cambridge University Press:  10 February 2011

P. Cusumano
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, U K, E-mail: cusumano@elec.gla.ac.uk
A. Saher Helmy
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, U K, E-mail: cusumano@elec.gla.ac.uk
B. S. Ooi
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, U K, E-mail: cusumano@elec.gla.ac.uk
R. M. De La Rue
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, U K, E-mail: cusumano@elec.gla.ac.uk
A. C. Bryce
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, U K, E-mail: cusumano@elec.gla.ac.uk
J. H. Marsh
Affiliation:
Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland, U K, E-mail: cusumano@elec.gla.ac.uk
Get access

Abstract

A spatially selective quantum well intermixing process, using phosphorus-doped silica (SiO2:P) containing 5 wt% P to inhibit intermixing and pure SiO2 to enhance intermixing, is presented. The SiO2:P cap has been found to suppress bandgap shifts in both p-i-n and n-i-p GaAs/AlGaAs quantum well laser structures, with bandgap shift differences as large as 100 meV observed from samples capped with SiO2 and with SiO2:P after rapid thermal processing at temperatures as high as 950 °C for 60 s. Extended cavity ridge lasers exhibited low threshold currents with TE losses of 3.2 cm−1 measured in the passive waveguide sections at the lasing wavelength using the Fabry-Perot resonance method. This value is among the lowest reported so far using an impurity-free disordering technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deppe, D. G., Guido, L. J., Holonyak, N. Jr, Hsieh, K. C., Burnham, R. D., Thornton, R. L. and Paoli, T. L., Appl. Phys. Lett. 49, 510 (1986).Google Scholar
[2] Haynes, T. E., Chu, W. K. and Picraux, S. T., Appl. Phys. Lett. 50, 1071 (1987).Google Scholar
[3] Beauvais, J., Marsh, J. H., Kean, A. H., Bryce, A. C. and Button, C., Electron. Lett. 28, 1670 (1992).Google Scholar
[4] Yee, H. H., Ayling, S., De La Rue, R. M., Vogele, B. and Song, Y. P., IEE Proc. Optoelectron. 143, 94(1996).Google Scholar
[5] Guido, L. J., Hsieh, K. C., Holonyak, N. Jr, Kaliski, R. W., Eu, V., Feng, M. and Burnham, R. D., J. Appl. Phys. 61, 1329 (1987).Google Scholar
[6] Kuzuhara, M., Nozaki, T. and Kamejima, T., J. Appl. Phys. 66, 5833 (1989).Google Scholar
[7] Hamilton, C. J., Hicks, S. E., Vogele, B., Marsh, J. H. and Aitchison, J.S., Electron. Lett. 31, 1393(1995).Google Scholar
[8] Rao, E. V. K., Hamoudi, A., Krauz, Ph., Juhel, M. and Thibierge, H., Appl. Phys. Lett. 66, 472 (1995).Google Scholar
[9] Rao, E. V. K. (private communication).Google Scholar
[10] Ghandhi, S. K., VLSI fabrication principles. 2nd ed. (John Wiley & Sons, New York, 1994), pp. 530532 and references therein.Google Scholar
[11] Tien, T. Y. and Hummel, F. A., J. Am. Ceram. Soc. 45, 422 (1962).Google Scholar
[12] Walker, R. G., Electron. Lett. 21, 581 (1985).Google Scholar
[13] Mcllroy, P. W. A., Kurobe, A. and Uematsu, Y., IEEE J. Quantum Electron. QE–21, 1958 (1985).Google Scholar
[14] Singh, S., Baiocchi, F., Butherus, A. D., Grodkiewicz, W. H., Schwartz, B., Van Uitert, L. G., Yesis, L. and Zydzik, G. J., J. Appl. Phys. 64, 4194 (1988).Google Scholar
[15] Deppe, D. G. and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar
[16] O'Brien, S., Shealy, J. R., Chambers, F. A. and Devane, G., J. Appl. Phys. 71, 1067 (1992)Google Scholar
[17] Waters, R. G., Hill, D. S. and Yellen, S. L., Appl. Phys. Lett. 52, 2017 (1988)Google Scholar