Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-05T12:23:35.537Z Has data issue: false hasContentIssue false

Improvements of Structural and Optical Properties of GaN/Al0.10Ga0.9N Multi-Quantum Wells by Isoelectronic In-doping

Published online by Cambridge University Press:  21 March 2011

Lianshan Wang
Affiliation:
Opto-electronic System Cluster, Institute of Materials Research & Engineering, 3 Research Link, 117602 Singapore
Soo Jin Chua
Affiliation:
Opto-electronic System Cluster, Institute of Materials Research & Engineering, 3 Research Link, 117602 Singapore
Wenhong Sun
Affiliation:
Opto-electronic System Cluster, Institute of Materials Research & Engineering, 3 Research Link, 117602 Singapore
Get access

Abstract

Absratct:

The effects of isoelectronic In-doping were studied on the structural and optical properties of 3-periods and 10-periods of GaN/Al0.10Ga0.90N multi quantum wells (MQWs). The GaN/Al40.10Ga0.90N MQWs were grown on u-GaN/sapphire via metalorganic chemical deposition (MOCVD) at 1050°C in H2 carrier gas. X-ray diffraction (XRD), and micro-Photoluminescence (PL) measurements revealed that In-doping into well layers improves the crystalline and optical properties of MQWs relative to those samples without In-doping. With increasing Trimethylindium (TMIn) flow rates from 4.2 mol/min to 42.6 mol/min, PL peaks from well layers obviously redshifted, due to the improvement of the strain along the interfaces between MQWS, irrespective of 3-periods or 10 periods MQWs. The improvement of the crystal quality was also confirmed by XRD.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Fasol, G., “The blue laser diode”, Springer (Berlin), 1997 Google Scholar
2. Marchand, H., Wu, X. H., Ibbetson, J. P., Fini, P. T., Kozodoy, P., Keller, S., Speck, J. S., DenBaars, S. P., Mishra, U. K., Appl. Phys. Lett. 73 747 (1998)Google Scholar
3. Amano, H., Iwaya, M., Kashima, T., Katsuragawa, M., Akasaki, I., Han, J., Hearne, S., Floro, J. A., Chason, E. and Figiel, J., Jpn. J. Appl. Phys. 37, L1540 (1998)Google Scholar
4. Shen, Xu-Qiang and Aoyagi, Y., Jpn. J. Appl. Phys. 38, L14 (1999)Google Scholar
5. Shu, C. K., Ou, J., Lin, H. C., Chen, W. K., Lee, M. C., Appl. Phys. Lett. 73, 641 (1998)Google Scholar
6. Widmann, F., Daudin, B., Feuillet, G., Pelekanos, N., Rouviére, J. L., Appl. Phys. Lett. 73, 2642 (1998)Google Scholar
7. Foxon, C., Hooper, S. E., Cheng, T. S., Orton, J. W., Ren, G. B., Ber, B. Ya, Merkulov, A. V., Novikov, S. V., and Tret'yakov, V. V., Semicond. Sci. Technol. 13, 1469 (1998)Google Scholar
8. Zeng, K. C., Li, J., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett., 76, 3040 (2000)Google Scholar
9. Im, Jin Seo, Kollmer, H., Off, J.. Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B57, R9435 (1998)Google Scholar
10. Kim, H. S., Lin, J. Y., Jiang, H. X., Chow, W. W., Botchkarev, A., and Morkoc, H., Appl. Phys. Lett. 73, 3426 (1998)Google Scholar
11. Shan, W., Schmidt, J. J., Yang, X. H., Hwang, S. J., Song, J. J., Goldenberg, B., Appl. Phys. Lett. 66, 985 (1995)Google Scholar
12. Chung, B. C., and Gershenzon, M., J. Appl. Phys. 72, 651 (1992)Google Scholar
13. Ben, B. G., Orton, J. W., Cheng, T. S., Dewsbip, D. J., Lacklison, D. E., Foxon, C. T., Malloy, C. H., and Chen, X., MRS Internet J. Nitride Semicond. Res. 1, Article 22 (1996).Google Scholar
14. Fischer, S., Wetzel, C., Walukiewicz, W., and Haller, E. E., Mater. Res. Sco. Symp. Proc. 395, 571 (1996)Google Scholar
15. Eckey, L., Hoffmann, A., Heitz, R., Broser, I., Meyer, B. K., Detchprohm, T., Hiramatsu, K., Amano, H., and Akasaki, I., Mater. Res. Sco. Symp. Proc. 395, 589 (1996)Google Scholar
16. Rieger, W., Dimitrov, R., Brunner, D., Rohrer, E., Ambacher, O., and Stutzmann, M., Phys. Rev. B54, 17596 (1996)Google Scholar