Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-19T01:36:07.430Z Has data issue: false hasContentIssue false

Impact of Various Polysilicon Deposition Process on Thin Gate-Oxide Properties in Submicron CMOS Technology

Published online by Cambridge University Press:  21 February 2011

P. K. Roy
Affiliation:
AT&T Bell Laboratories
T. Kook
Affiliation:
AT&T Bell Laboratories
V. C. Kannan
Affiliation:
AT&T Bell Laboratories
G. J. Felton
Affiliation:
AT&T Bell Laboratories
R. A. Powell
Affiliation:
AT&T Bell Laboratories
A. N. Velaga
Affiliation:
AT&T Microelectronics 555 Union Boulevard, Allentown, PA
Get access

Abstract

The dielectric quality (defect density, Do and breakdown strength, Fbd) of 150Å SiO2 gate oxide (GOX) films grown by conventional or stacked oxidation scheme are discussed from the leakage measurements of polysilicon capacitors on test structure simulating our submicron CMOS process. Various polysilicon (poly) deposition processes from silane pyrolysis (570°C -620°C) were used by the low pressure chemical vapor deposition (LPCVD) technique. Both in situ and ex situ poly doping by phosphorus (P) were used to ascertain their impact on the GOX properties. The substructural characteristics of the poly/SiO2 and SiO2/Si interfaces generated by various combinations of GOX and poly deposition processes were done by the high resolution TEM lattice fringe technique under phase contrast mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Baglee, D. A. and Shah, P. L., in “VLSI Electronics: Microstructure Science,” Einspruch, N. G. and Larrabe, G. B. eds., Academic Press, NY, 7, (1983), p. 165.Google Scholar
[2] Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
[3] Ryzyllo, J., J. Electrochem. Soc. 133, 1667 (1986).Google Scholar
[4] Roy, P. K. and Sinha, A. K., “Synthesis of High Quality Ultrathin Gate Oxides for ULSI Applications, AT&T Tech. J. 67 (6), 155174 (Nov.-Dec. 1988)Google Scholar
[5] Herring, R., Solid State Technol., 12 (11), 75 (1979).Google Scholar
[6] Chen, M-L., Leung, C-W, Cochran, W. T., Harney, R., Maury, A., and Hey, H.P.W, IEDM Tech. Digest, 256 (1986).Google Scholar
[7] Doklan, R. H., Martin, E. P., Roy, P. K., Shive, S. F., and Sinha, A. K., U. S. Patent No. 4, 851, 370, (25 July 1989) and P. K. Roy, R. H. Doklan, E. P. Martin, S. F.Shive, and A. K. Sinha, IEDM Tech. Digest, 714 (1989).Google Scholar
[8] Irene, E. A., J. Electrochem Soc. 125, 1708 (1978).10.1149/1.2131277Google Scholar
[9] Kinsbarr, E., Sternheim, M. and Knoell, R., Appl. Phys. Lett. 42 (9), 835 (1983).Google Scholar
[10] Duffy, M. T., McGinn, J. T., Shaw, J.M., Smith, R. T., Soltis, R. A., and Harbeke, G., RCA Rev. 44, 313 (1983).Google Scholar
[11] Baudant, A. and Sacilotti, M., J. Electrochem. Soc. 129, 1109 (1982).Google Scholar
[12] Roy, P. K., U. S. Patent No. 4,742,020 (3 May 1988).Google Scholar
[13] Roy, P. K. and Kannan, V. C., in “Characterization of the Structure and Chemistry of Defects in Materials,” Edited by Larson, B. C., Rühle, M. and Seidman, D. N. (Mater. Res. Soc. Proc. 138, Pittsburgh, Pa) pp. 367371.Google Scholar
[14] Taylor, J. A. (private communication).Google Scholar