Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T03:04:39.006Z Has data issue: false hasContentIssue false

Impact of the Al Mole Fraction in the Bulk- and Surface-State Induced Instability of AlGaN/GaN HEMTs

Published online by Cambridge University Press:  17 May 2012

S. DasGupta
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
M. Sun
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
A. Armstrong
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
R. Kaplar
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
M. Marinella
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
J. Stanley
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
M. Smith
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
S. Atcitty
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185 USA
T. Palacios
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
Get access

Abstract

Charge trapping and slow (10 s to > 1000 s) detrapping in AlGaN/GaN HEMTs designed for high breakdown voltage (> 1500 V) are studied to identify the impact of Al molefraction and passivation on trapping. Two different trapping components, TG1 (Ea = 0.62 eV) and TG2 (with negligible temperature dependence) in AlGaN dominate under gate bias stress in the off-state. Al0.15Ga0.85N shows much more vulnerability to trapping under gate stress in the absence of passivation than does AlGaN with a higher Al mole fraction. Under large drain bias, trapping is dominated by a much deeper trap TD. Detrapping under illumination by monochromatic light shows TD to have Ea ≈ 1.65 eV in Al0.26Ga0.74N and Ea ≈ 1.85 eV in Al0.15Ga0.85N. This is consistent with a transition from a deep state (Ec - 2.0 eV) in the AlGaN barrier to the 2DEG.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, B. and Palacios, T., IEEE Electron Dev. Lett., 31(9), 951, (2010).Google Scholar
2. Wu, Y.-F., Mitos, M. J., Moore, M. L., and Heikman, S., IEEE Electron Dev. Lett., 29(8), 824, (2008).Google Scholar
3. Joh, J. and del Alamo, J. A., IEDM Technical Digest, 461 (2008).Google Scholar
4. Meneghesso, G., Verzellesi, G., Pierobon, R., Rampazzo, F., Chini, A., Mishra, U. K., Canali, C., and Zanoni, E., IEEE Trans. Electron Devices, 51(10) 1554, (2004).Google Scholar
5. Vetury, R., Zhang, N. Q., Keller, S., and Mishra, U. K., IEEE Trans. Electron Devices, 48(3), pp. 560566, (2001).Google Scholar
6. Koley, G., Tilak, V., Eastman, L. F., and Spencer, M. G., IEEE Trans. Electron Devices, 50(4), 886, (2003).Google Scholar
7. Joh, J. and del Alamo, J.A., IEEE Trans. Electron Devices, 58(1), 132, (2011).Google Scholar
8. Nam, K. B., Nakarmi, M. L., Lin, J. Y., and Jiang, H. X., Appl. Phys. Lett., 86(22), 22108, (2005).Google Scholar
9. Henry, T. A., Armstrong, A., Allerman, A. A., Crawford, M. H., Appl. Phys. Lett., 100(4), 043509, (2012).Google Scholar
10. Pankove, J. I., and Schade, H., Appl. Phys. Lett., 25, 53, (1974).Google Scholar
11. Armstrong, A., Chakraborty, A., Speck, J. S., DenBaars, S. P., Mishra, U. K., and Ringel, S. A., Appl. Phys. Lett. 89, 262116 (2006).Google Scholar