Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T17:07:45.476Z Has data issue: false hasContentIssue false

Impact of Ge diffusion and wafer cross hatching on strained Si MOSFET electrical parameters

Published online by Cambridge University Press:  17 March 2011

Driscoll L.
Affiliation:
School of Electrical, Electronic & Computer EngineeringUniversity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, U.K
Chattopadhyay S.
Affiliation:
School of Electrical, Electronic & Computer EngineeringUniversity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, U.K
O'Neill A.
Affiliation:
School of Electrical, Electronic & Computer EngineeringUniversity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, U.K
Kwa K.
Affiliation:
School of Electrical, Electronic & Computer EngineeringUniversity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, U.K
Dobrosz P.
Affiliation:
School of Chemical Engineering & Advanced MaterialsUniversity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, U.K
Bull S.
Affiliation:
School of Chemical Engineering & Advanced MaterialsUniversity of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, U.K
Get access

Abstract

A contender for future generations of CMOS technology is the strained silicon (S-Si) MOSFET. The mobility enhancement in S-Si can be exploited to maintain the performance enhancements demanded by Moore's law with reduced critical dimensions. S-Si is obtained by growth of a thin Si layer over a thick virtual substrate (VS) of relaxed silicon-germanium (SiGe). The mobility of a surface channel MOSFET is dependent on the quality of the silicon-oxide (Si/SiO2) interface. Ge may out diffuse from the virtual substrate to the oxide interface causing an increase in trapping density. As the Ge content in the virtual substrate increases surface roughness also increases. These phenomena both lead to a reduction in mobility.

The study of a matrix of devices having variable Ge composition and S-Si thickness is crucial in deconvolving the contributions of Ge diffusion and wafer cross-hatching roughness on electrical parameters. Increasing VS Ge composition increases the Ge concentration at the SSi/SiO2 interface and cross-hatching amplitude whereas reducing S-Si channel thickness only increases Ge concentration at the S-Si/SiO2 interface and does not increase cross-hatch amplitude. Interface state density, drive current, gate leakage current, transconductance and carrier mobility data are presented for this two-dimensional space of VS composition and S-Si thickness. The relative importance of Ge diffusion and cross-hatching roughness can be seen in this data. The results of this study indicate a lower limit of 7 nm for the S-Si thickness and an upper limit of approximately 20 % Ge in the virtual substrate for the current processing technology. Understanding the performance-limiting mechanisms in S-Si is crucial in the optimisation of VS Ge composition and S-Si thickness for current and future generations of S-Si CMOS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[2] Badcock, S. G., O'Neill, A. G., and Chester, E. G.Device and circuit performance of SiGe/Si MOSFETs,” Solid-State Electron., vol. 46, pp. 19251932, 2002.Google Scholar
[3] People, R., “Physics and applications of GeSi/Si strained layer heterostructures,” IEEE J. Quant.Electron., vol. 22, pp. 16971710, 1986.Google Scholar
[4] Olsen, S. H., O'Neill, A. G., Norris, D. J., Cullis, A. G., Woods, N. J., Zhang, J., Fobelets, K., and Kemhadjian, H. A., “Strained Si/SiGe n-channel MOSFETs: impact of cross-hatching on performance,” Semicond. Sci. Technol., vol. 17, pp. 655661, 2002.Google Scholar
[5] Currie, M. T., Leitz, C. W., Langdo, T. A., Taraschi, G., Fitzgerald, E. A., and Antoniadis, D. A., “Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates,” J. Vac. Sci. Technol. B, vol. 19, pp. 22682279, 2001.Google Scholar
[6] Wang, H. C. -H., Wang, Y.-P., Chen, S. -J., Ge, C. -H., Ting, S. M., Kung, J. -Y., Hwang, R. -L., Chiu, H. -K., Sheu, L. C., Tsai, P. -Y., Yao, L. -G., Chen, S. -C., Tao, H. -J., Yeo, Y. -C., Lee, W. -C., Hu, C., “Substrate-strained silicon technology: process integration,” IEDM '03 Tech. Dig., pp.3.4.1– 3.4.4, 2003.Google Scholar
[7] K. Kwa, S. K., Chattopadhyay, S., Olsen, S. H., Driscoll, L. S., and O'Neill, A. G., “Optimisation of Channel Thickness in Strained Si/SiGe MOSFETs,” ESSDERC 2003.Google Scholar
[8] Olsen, S. H., O'Neill, A. G., Driscoll, L. S., K. Kwa, S. K., Chattopadhyay, S., Waite, A. M., Tang, Y. T., Evans, A. G. R., Norris, D. J., Cullis, A. G., Paul, D. J., and Robbins, D. J., “Highperformance nMOSFETs using a novel strained Si/SiGe CMOS architecture,” IEEE Trans. Electron Devices, vol. 50, pp. 19611969, 2003.Google Scholar
[9] Schroder, D. K., “Semiconductor Material and Device Characterisation,” 2nd Ed., Willey-Interscience, Chap. 6, pp. 368373, 1998.Google Scholar
[10] Voinigescu, S. P., Iniewski, K.. Lisak, R., Salama, C. A. T., Noél, J.-P., and Houghton, D. C., “New technique for the characterisation of Si/Sige layers using heterostructure MOS capacitors,” Solid-State Electron., vol. 37, pp. 14911501, 1994.Google Scholar
[11] Chattopadhyay, S., Kwa, K. S. K., Olsen, S. H., Driscoll, L. S., and O'Neill, A. G., “C-V characterization of strained Si/SiGe multiple heterojunction capacitor as a tool for heterojunction MOSFET channel design,” Semicond. Sci. Technol., vol. 18, pp. 738744, 2003.Google Scholar
[12] Tu, R. H., Wann, C., King, J. C., Ko, P. K., and Hu, C., “An AC conductance technique for measuring self heating in SOI MOSFET's,” IEEE Elctron Device Lett., vol. 16, pp. 6769, 1995.Google Scholar