Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T10:40:39.018Z Has data issue: false hasContentIssue false

Hydrogen Storage Capacity Improvement of Nanostructured Materials

Published online by Cambridge University Press:  17 March 2011

Jeremy Lawrence
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
Gu Xu
Affiliation:
Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada
Get access

Abstract

Safe, lightweight, and cost-effective materials are required to practically store hydrogen for use in portable fuel cell applications. Compressed hydrogen and on-board hydrocarbon reforming present certain advantages, but their limitations must ultimately render them insufficient. Storage in hydrides and adsorption systems show promise in models and experimentation, but a practical medium remains unavailable. To study hydrogen storage properties a new volumetric testing apparatus was designed and constructed. Adsorption conditions are evaluated up to pressures exceeding 250 bar and a broad range of temperatures. RF sputtering was used to introduce metals to carbon nanotubes with the aim to enhance hydrogen storage. Here we show a significant improvement in the gravimetric storage density over that of as-prepared single-wall nanotube samples that may be due to the unique interface introduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J., Nature (1997), 386, 377.Google Scholar
2. Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A., Smalley, R.E., Appl. Phys. Lett. 74, 2307 (1999).Google Scholar
3. Liu, C., Fan, Y.Y., Liu, M., Cong, H.T., Cheng, H.M., Dresselhaus, M.S., Science 286, 1127 (1999).Google Scholar
4. Cao, A., Zhu, H., Zhang, X., Li, Z., Ruan, D., Xu, C., Wei, B., Liang, J., Wu, D., Chem. Phys. Lett. 342, 510 (2001).Google Scholar
5. Chen, Y., Shaw, D.T., Bai, X.D., Wang, E.G., Lund, C., Lu, W.M., Chung, D.D.L., Appl. Phys. Lett. 78, 2128 (2001).Google Scholar
6. Rzepka, M., Lamp, P., Casa-Lillo, M.A. de la, J. Phys. Chem. B 102, 10894 (1998).Google Scholar
7. Wang, Q., Johnson, J.K., J. Phys. Chem. B 103, 4809 (1999).Google Scholar
8. Nijkamp, M.G., Raaymakers, J.E.M.J., Dillen, A.J. van, Jong, K.P. de, Appl Phys. A 72, 619 (2001).Google Scholar
9. Chen, P., Wu, X., Lin, J., Tan, K.L., Science 285, 91 (1999).Google Scholar
10. Chambers, A., Park, C., Baker, R.T.K., Rodriguez, N.M., J. Phys.Chem. B 102, 4253 (1998).Google Scholar
11. Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G.S., Choi, Y.-M., Downes, P., Hulman, M., Roth, S., Stepanek, I., Bernier, P., Appl. Phys. A 72, 129 (2001).Google Scholar
12. Dillon, A.C., Gennett, T., Alleman, J.L., Jones, K.M., Parilla, P.A., Heben, M.J., Proceedings of the 2000 DOE/NREL Hydrogen Program Review, May 2000.Google Scholar
13. Zandonella, C., Nature 410, 734 (2001).Google Scholar
14. Jensen, C.M., Zidan, R., Mariels, N., Hee, A., Hagen, C., Int. J. Hydrogen Energy 24, 461 (1999).Google Scholar
15. Zaluska, A., Zaluski, L., Strom-Olsen, J.O., J. Alloys Compd., 288, 217 (1999).Google Scholar