Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-08T05:37:14.024Z Has data issue: false hasContentIssue false

Hydrogen Passivation of Oxygen Donors in Si

Published online by Cambridge University Press:  28 February 2011

S. J. Pearton
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
A. M. Chantre
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
L. C. Kimerling
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
K. D. Cummings
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
W. C. Dautremont-Smith
Affiliation:
AT & T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

The electrical activity of the oxygen-related thermal donors in heat-treated, P-doped, Czochralski grown Si is passivated by reaction with atomic hydrogen. Secondary ion mass spectrometry and spreading resistance profiles on deuterium plasma treated samples show a direct correlation between the deuterium incorporation depth and the distance over which the thermal donors are passivated. The donor activity is restored by annealing above 400°C, and comparison with other defect dehydrogenation data suggests that the thermal donors may contain Si dangling bonds. Results obtained from deep level transient spectroscopy measurements are used to illustrate the observed donor passivation and reactivation kinetics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Patel, J. R.Semiconductor Silicon 1981” eds. Huff, H. R., Kreigel, R. J. and Takeishi, Y. (Electrochem. Soc., Pennington NJ, 1981) p. 189.Google Scholar
(2) Oehrlein, G. S. and Corbett, J. W., “Defects in Semiconductors II” eds. Mahajan, S. and Corbett, J. W. (North Holland, NY, 1981) p. 107.Google Scholar
(3) Bourret, A., J. Electron. Mat. 14a 129 (1984).Google Scholar
(4) Stavola, M. and Snyder, L. C., “Defects in Silicon”, eds. Bullis, W. M. and Kimerling, L. C. (Electrochem. Soc., Pennington, NJ, 1983), p. 61.Google Scholar
(5) SIMS measurements performed by C. A. Evans and Associates, San Mateo, CA, 94402.Google Scholar
(6) Spreading resistance profiles performed by Solecon Laboratories, Inc., Sunnyvale, CA, 94089.Google Scholar
(7) Pankove, J. I., Carlson, D. E., Berkeyheiser, J. E. and Wance, R. O., Phys. Rev. Lett. 51, 2224 (1983).Google Scholar
(8) Hansen, W. L., Pearton, S. J. and Hailer, E. E., Appl. Phys. Lett., 44, 606 (1984).CrossRefGoogle Scholar
(9) Mikkelsen, J. C. Jr., Appl. Phys. Lett. 46 884 (1985).CrossRefGoogle Scholar
(10) Johnson, N. M. and Moyer, M. D., Appl. Phys. Lett. 46, 787 (1985).Google Scholar
(11) Kimerling, L. C. and Benton, J. L., Appl. Phys. Lett. 29, 410 (1981).Google Scholar
(12) Mikkelsen, J. C. Jr., presented at 1985 Electronics Materials Conference, University of Colorado, Boulder, CO, June 19–21 (1985).Google Scholar
(13) Hansen, W. L., Hailer, E. E. and Luke, P. N., IEEE Trans. Nucl. Sci., NS 29 738 (1982).Google Scholar
(14) Pearton, S. J. and Tavendale, A. J., Phys. Rev. B 26 7105 (1982).CrossRefGoogle Scholar
(15) Data taken from Figure 7 in Picraux, S. T., Vook, F. L. and Stein, H. J., Inst. Phys. Conf. Ser. No. 46 (Institute of Physics, Bristol, UK 1979) p. 31.Google Scholar
(16) Ourmazd, A., Bourret, A. and Schroter, W., J. Appl. Phys. 56 1670 (1984).Google Scholar
(17) Kaiser, W., Frisch, H. L. and Reiss, H., Phys. Rev. 112 1546 (1958).Google Scholar
(18) Henry, P. M., Farmer, J. W. and Meese, J. M., Appl. Phys. Lett. 45, 454 (1984).Google Scholar
(19) Tavendale, A. J., Alexiev, D. and Williams, A. A., Appl. Phys. Lett. 47 316 (1985).Google Scholar
(20) Tavendale, A. J. (private communication).Google Scholar