Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T03:16:21.720Z Has data issue: false hasContentIssue false

Host Excitation and Luminescence in Large Band Gap Oxides

Published online by Cambridge University Press:  10 February 2011

P.C. Schmidt
Affiliation:
Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstr. 20, D-64287Germany, pcs@pc.chemie.tu-darmstadt.de
J. Sticht
Affiliation:
Institut für Physikalische Chemie, Technische Universität Darmstadt, Petersenstr. 20, D-64287Germany, pcs@pc.chemie.tu-darmstadt.de
V. Eyert
Affiliation:
Hahn-Meitner-Institut, Department of Physical Chemistry, Berlin, Germany
K.C. Mishra
Affiliation:
Central Research, OSRAM SYLVANIA INC., Beverly, MA
Get access

Abstract

A good understanding of the electronic states near the band gap of large gap materials is essential for designing phosphors when the energy of exciting radiation exceeds the band gap. This is particularly true when phosphors are designed for application in rare gas discharges with vacuum UV (VUV) radiation. Using density functional ab initio methods (augmented spherical waves and full potential linear muffin-tin orbitals), we have analyzed the nature of host excitations near the band gap energy for a number of complex oxides: LaPO4, AIPO4, BaB2O4, YBO3 and LuBO3 and the common trends in the optical transitions in borates and phosphates and the corresponding binary oxides La2O3, Lu2O3, Y2O3, BaO, B2O3 and P2O5. We have also studied the nature of impurity states of Eu3+ and Pr substituting y3+, in large gap oxides. The studies show how the relative ordering of the one-electron states of activator ions with respect to band states of the host lattice may affect their luminescence properties under host excitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Avella, F. J., J. Electrochem. Soc. 113, 1225(1966); F.J. Avella, 0. J. Sovers and C. S. Wiggins, J. Electrochem. Soc. 114, 613 (1967).Google Scholar
2. Vries, A. J. de, Blasse, G. and Pet, R. J., Mat. Res. Bull. 22, 1141 (1987); A. M. Srivastava, M. T. Sobieraj, S. K. Ruan and E. Banks, Mat. Res. Bull. 21, 1455 (1986).Google Scholar
3. Yamamoto, H., Matsikiyo, H., Morita, Y. and Uehera, Y., Extended Abstracts of the ECS Meeting, Honolulu, Hawaii, October 18-23 (1987).Google Scholar
4. Veenis, A. W. and Brill, A Phillips J. Research 33, 124 (1978), J. Koike, T. Kojima, R. Toyonaga, A. Kagami, T. Hase and S, Inaho, J. Electrochem. Soc. 126, 1008 (1979).Google Scholar
5. Chen, C. Z., Gao, D.-S. and Chen, C. T., Academic Thesis Conf. Cryst. Growth Mater. (China) B44, 107 (1979).Google Scholar
6. French, R. H., Ling, J.W., Ohuchi, F. S. and Chen, C. T., Phys. Rev. B 44, 8496 (1991).Google Scholar
7. Cheng, W. D., Huang, J. S. and Lu, J.X., Phys. Rev. B 57, 1527 (1998).Google Scholar
8. Li, J., Duan, C., Gu, Z. and Wang, D., Phys. Rev. B 57, 6925 (1998) and references there-in.Google Scholar
9. Mishra, K.C., DeBoer, B.G., Schmidt, P.C., Osterloh, I., Stephan, M., Eyert, V. and Johnson, K.H., Bunsenges, Ber.. Phys. Chem. 102, 1772 (1998))Google Scholar
10. Sferco, S.J., Allan, G., Lefebvre, I., Lannoo, M., Bergigant, E. and Hollinger, G., Phys. Rev. B 17, 11232(1990)Google Scholar
11. Mishra, K. C., Osterloh, I., Anton, H., Hannebauer, B., Schmidt, P. C. and Johnson, K. H., J. Mater. Res. 12, 2183 (1997).Google Scholar
12. Xu, Y.-N., Ching, W.Y. and French, R.H., Phys. Rev. B 48, 17695(1993)Google Scholar
13. Hsu, W.Y. and R.V: , Kasowski, J. Appl. Phys. 73, 4101 (1993)Google Scholar
14. Burdett, J. K. and Gramsch, S.Å., Inorg. Chem. 33, 4309 (1994)Google Scholar
15. Nakzawa, E. and Shiga, F. J., J. Luminesce. 15, 255 (19770; Å. N. Trukhin, Solid State Commun. 90,761 (1994).Google Scholar
16. Perdew, J.P. and Zunger, A., Phys. Rev. B 23, 5048(1981); R.W. Godby, M. Schlüter and L.J. Sham, Phys. Rev. Lett. 56, 2415(1986); see e.g. review article: R.O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689 (1989).Google Scholar
17. Kunz, A. B., Phys. Rev. B 12, 5890 (1975); R.P. Pandey, J.E. Jaffe, and A.B. Kunz, Phys. Rev. B 43, 9228 (199 1)Google Scholar
18. Svane, A. and Gunnarson, O., Phys. Rev. Lett. 65, 1148(1990); Z.Szokk, W.M. Temmerman and H. Winter, Phys. Rev. B 47,4029 (1993)Google Scholar
19. Langreth, D.C. an Mehl, M.J., Phys. Rev. B 28, 1809 (1983).Google Scholar
20. Kotani, T., Phys. Rev. B 50, 14816 (1994); M. Städele, J.Å. Majewski, P. Vogl and A. Görling. Phys. Rev. Lett. 79, 2089 (1997).Google Scholar
21. Williams, A.R., Kübler, J. and Gelatt, C.D. Jr., Phys. Rev. B 19, 6094 (1979).Google Scholar
22. Eyert, V. and Hoeck, K.-H., Phys. Rev. B 57, 12727 (1998)Google Scholar
23. Gerlach, W., Z. Phys. 9, 184 (1922).Google Scholar
24. Mighell, A.D., Perloff, A., and Block, S., Acta Cryst., 20, 819 (1966).Google Scholar
25. Wells, A. F., Structural Inorganic Chemistry, (Oxford U. Press, 1984).Google Scholar
26. Zachariasen, W., Norsk Geologisk Tidsskrift, 9, 310 (1927).Google Scholar
27. Morgan, P.E.D., Carroll, P.J. and Lange, F.F., Mat. Res. Bill. 12, 251(1977).Google Scholar
28. Gurr, G. E., Montgomery, P. W., Knutson, C. D., Gorres, B. T., Acta Cryst. B 26, 906 (1970).Google Scholar
29. Springborg, M. and Taurian, O.E., J. Phys. C 19, 6347 (1986).Google Scholar
30. Stepanyuk, V.S., Szasz, A., Grigorenko, A.A., Katsnelson, A.A., Farberovich, O.V., Mikhalin, V.V, and Hendry, A., Phys. Stat. Sol. (B) 173, 633(1992).Google Scholar
31. Mishra, K. C., Berkowitz, J. K.; Johnson, K.H., and Schmidt, P.C., Phys. Rev. B 45, 10902 (1992)Google Scholar