Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-20T01:52:21.266Z Has data issue: false hasContentIssue false

Hole Drift Mobility in a-Si1−xCx:H

Published online by Cambridge University Press:  16 February 2011

Qing Gu
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244–1130, USA
Qi Wang
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244–1130, USA
E. A. Schiff
Affiliation:
Department of Physics, Syracuse University, Syracuse, NY 13244–1130, USA
Yuañ-Min Li
Affiliation:
Solarex Corp., Thin Film Division, 826 Newtown-Yardley Rd., Newtown, PA 18940, USA
Charles T. Malone
Affiliation:
Electronic Materials and Processing Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
Get access

Abstract

We present a summary of our recent measurements on hole drift mobilities in hydro-genated amorphous silicon-carbon alloys (a-Si1−xCx:H). Increasing the bandgap has a vastly smaller effect for the hole mobility than for electrons. In conjunction with previous drift Mobility Measurements in a-Si1−xCx:H and a-Si1−xGex:H, these hole measurements complete a simple pattern for the effects of bandgap modification on drift Mobilities: electron mobilities decline as the bandgap is increased beyond 1.72 eV or decreased below 1.72 eV, but hole mobilities are relatively unaffected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Karg, F., Krühler, W., Möller, M. and Klitzing, K. v., J.Appl. Phys, 60(6), 2016 (1986).Google Scholar
2. Bauer, G. B., Nebel, C.E., Schubert, M. B. and Schumn, G., in AMorphous Silicon Technology - 1989, edited by Arun, Madan, Malcolm J., Thompson, P. C., Taylor, Hamakawa, Y. and LeComber, P. G., MRS Symposia Proceedings No. 149 (Materials Research Society, Pittsburgh, 1989), p. 485.Google Scholar
3. Qi, Wang, Homer, Antoniadis, Schiff, E.A. and Guha, S., Phys. Rev. B, 47, 9435 (1993).Google Scholar
4. Guha, S., Payson, J. S., Agarwal, S. C. and Ovshinsky, S. R., J. Non-Cryst. Solids, 97&98, 1455 (1987).CrossRefGoogle Scholar
5. Vanderhaghen, R. and Longeaud, C., J. Non-Cryst. Solids, 114, 540 (1989).Google Scholar
6. Guha, S., Yang, J., Banerjee, A., Glatfelter, T., Hoffman, K. and Xu, X., Proceedings 7ih International PVSEC, PVSEC-7, Nagoya, Japan, 1993.Google Scholar
7. Yuan-Min, Li, Catalano, A. and Fieselmann, B. F., in AMorphous Silicon Technology -1992, edited by Malcolm J., Thompson, Hamakawa, Y., LeComber, P. G., Arun, Madan and Schiff, E. A., MRS Symposia Proceedings No. 258 (Materials Research Society, Pittsburgh, 1992), p. 923.Google Scholar
8. Yuan-Min, Li, in AMorphous Silicon Technology - 1993, edited by Schiff, E. A., Malcolm J., Thompson, Arun, Madan, Kazunobu, Tanaka and LeComber, P. G., MRS Symposia Proceedings No. 297 (Materials Research Society, Pittsburgh, 1993), p. 803.Google Scholar
9. Qi, Wang, Schiff, E. A. and Yuan-Min, Li, in AMorphous Silicon Technology - 1993, loc. cit., p. 419.Google Scholar
10. Bayley, P. A., Browne, A. K., Marshall, J. M., Van Swaaij, R.A.C.M.M. and Hepburn, A. R., J. Non-Cryst. Solids, in press.Google Scholar
11. Adriaenssens, G. J. and Özcan, Öktü, J. Non-Cryst. Solids, 164–166, 1047 (1993).CrossRefGoogle Scholar
12. Tiedje, T., Abeles, B. and Cebulka, J. M., Solid State Commun., 47 (6), 493 (1983).Google Scholar
13. Marshall, J. M., Street, R. A., Thompson, M. J. and Jackson, W. B., Phil. Mag. B, 57 (3), 387 (1988).CrossRefGoogle Scholar
14. Aljishi, S., Shu, J. and Ley, L., in AMorphous Silicon Technology - 1989, loc. cit., p. 125.Google Scholar
15. Essick, J. M., Mather, R. T., Bennett, M. S. and Newton, J., in AMorphous Silicon Technology - 1993, loc. cit., p. 705.Google Scholar