Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T11:55:16.641Z Has data issue: false hasContentIssue false

Highly Ordered Uniform Quantum Dots Induced by Ion Sputtering

Published online by Cambridge University Press:  10 February 2011

H. Kurz
Affiliation:
Institute of Semiconductor Electronics, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen, Germany
S. Facsko
Affiliation:
Institute of Semiconductor Electronics, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen, Germany
T. Bobek
Affiliation:
Institute of Semiconductor Electronics, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen, Germany
T. Dekorsy
Affiliation:
Institute of Semiconductor Electronics, RWTH Aachen, Sommerfeldstr. 24, D-52056 Aachen, Germany
Get access

Abstract

Self-organized hexagonally ordered quantum dot patterns are produced on GaSh (100) and InSb (100) surfaces by low energy Ar+-ion sputtering at normal angle of incidence. The QDs are crystalline, exhibiting narrow size distributions with diameters from 17–80 nm depending on sputter conditions, densely packed with densities as high as 2 × 1011 cm−2. The origin of the QD formation is attributed to the interplay of two surface processes during ion bombardment: ion induced surface roughening, provoked by the curvature dependent sputter yield and balanced by surface diffusive processes. The observed QD patterns obtained at different sputter conditions show that the formation mechanism can be described by the Kuramoto-Sivashinsky equation. The dominant diffusive process emerges to be effective ion induced without any mass transport on the surface, inherent to the sputtering process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Arakawa, Y. and Sakaki, H., Appl. Phys. Lett., 40 (11), 939 (1982).Google Scholar
2 Grabert, H. and Devoret, M. H., Single Charge Tunneling (Plenum Press, 1992) pp. 167.Google Scholar
3 Lent, C. S., Tougaw, P. D., Porod, W., and Bernstein, G. H., Nanotechnology, 4, 49 (1993).Google Scholar
4 Shchukin, V. A. and Bimberg, D., Rev. Mod. Phys., 71 (4), 1125 (1999).Google Scholar
5 Bandyopadhyay, S., Miller, A. E., Chang, H. C., Nanotechnology, 7, 360 (1996).Google Scholar
6 Selvan, S.T., Hayakawa, T., Nogami, M., Möller, M., J. Phys. Chem. B, 103, 7441 (1999).Google Scholar
7 Facsko, S., Dekorsy, T., Koerdt, C., Trappe, C., Kurz, H., Vogt, A., and Hartnagel, H.-L., Science, 285, 1551 (1999).Google Scholar
8 Carter, G., Navinsek, B., and Whitton, L., in Sputtering by Particle Bombardment III, Topics in Applied Physics, 64, edited by Behrisch, R. and Wittmaack, K. (Springer Verlag, 1991).Google Scholar
9 Auciello, O., J. Vac. Sci. Technol., 19 (4), 841 (1981).Google Scholar
10 Smentkowski, V. S., Prog. in Surf. Sci., 64, 1 (2000).Google Scholar
11 Navez, M. Saella, C., Chaperot, D., Acad, C. R.. Sci., 254, 240 (1962).Google Scholar
12 Carter, G., Nobes, M. J., Stoere, H., and Katardjiev, I. V., Surf. Interf. Analysis, 20, 90 (1993).Google Scholar
13 Carter, G., Vishnyakov, V., Martynenko, Yu. V., and Nobes, M. J., J. Appl. Phys., 78 (6), 3559 (1995).Google Scholar
14 Chason, E., Mayer, T. M., Kellerman, B. K., Mcllroy, D. T., and Howard, A. J., Phys. Rev. Lett., 72 (19), 3040 (1994).Google Scholar
15 Erlebacher, J. and Aziz, M. J., Phys. Rev. Lett., 82 (11), 2330 (1999).Google Scholar
16 Erlebacher, J. and Aziz, M. J., J. Vac. Sci. Technol. A, 18 (1), 115 (2000).Google Scholar
17 Rusponi, S., Boragno, C., and Valbusa, U., Phys. Rev. Lett., 78 (14), 2795 (1997).Google Scholar
18 Rusponi, S., Constantini, G., Boragno, C., and Valbusa, U., Phys. Rev. Lett., 81 (19), 4184 (1998).Google Scholar
19 Rusponi, S., Constantini, G., Mongeot, F. Buatier de, Boragno, C., and Valbusa, U., Appl. Phys. Lett., 75 (21), 3318 (1999).Google Scholar
20 Mayer, T.M., Chason, E., and Howard, A.J., J. Appl. Phys., 76 (3), 1633 (1994).Google Scholar
21 Bradley, R. M. and Harper, J. M. E., J. Vac. Sci. Technol. A, 6 (4), 2390 (1988).Google Scholar
22 Cuerno, R. and Barabà.si, A.-L., Phys. Rev. Lett., 74 (23), 4746 (1995).Google Scholar
23 Cuerno, R., Makse, H. A., Tomassone, S., Harrington, S. T., and Stanley, H. E., Phys. Rev. Lett., 75 (24), 4464 (1995).Google Scholar
24 Park, S., Kahng, B., Leong, H., and Barabàsi, A.-L., Phys, Rev. Lett., 83 (17), 3486 (1999).Google Scholar
25 Kuramoto, Y. and Suzuki, T., Prog. Theor. Phys., 55, 356 (1977).Google Scholar
26 Makeev, M. A. and Barabàsi, A.-L., Appl. Phys. Lett., 71 (19), 2800 (1997).Google Scholar
27 Khang, B., Jeong, H., and Barabàsi, A.-L., to be published.Google Scholar
28 Facsko, S., Dekorsy, T., and Kurz, H., to be published.Google Scholar