Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T02:11:40.862Z Has data issue: false hasContentIssue false

High Temperature Nanoindentation for the Study of Flow Defects

Published online by Cambridge University Press:  01 February 2011

C. A. Schuh
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA
J. K. Mason
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA
A. C. Lund
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA
A. M. Hodge
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA
Get access

Abstract

Our recent progress in elevated temperature nanoindentation is reviewed, with an emphasis on the study of discrete events (i.e., pop-in phenomena) observed during nanoindentation. For crystalline materials the incipient plasticity problem is associated with the nucleation of dislocations, an effect which we show to be significantly temperature dependent. For metallic glasses it is the operation of individual shear bands beneath the indenter that gives rise to pop-in events; here we also show this to be a temperature dependent phenomenon. Approaches to extract the activation volume and energy of defects involved in plastic flow beneath the indenter are also briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Suresh, S., Nieh, T. G. and Choi, B. W., Scripta Mater. 41, 951 (1999).Google Scholar
[2] Bahr, D. F., Kramer, D. E. and Gerberich, W. W., Acta Mater. 46, 3605 (1998).Google Scholar
[3] Chiu, Y. L. and Ngan, A. H. W., Acta Mater. 50, 1599 (2002).Google Scholar
[4] Gerberich, W. W., Nelson, J. C., Lilleodden, E. T., Anderson, P. and Wyrobek, J. T., Acta Mater. 44, 3585 (1996).Google Scholar
[5] Schuh, C. A. and Nieh, T. G., J. Mater. Res. 19, 46 (2004).Google Scholar
[6] Schuh, C. A. and Nieh, T. G., Acta Mater. 51, 87 (2003).Google Scholar
[7] Schuh, C. A. and Lund, A. C., J. Mater. Res. 19, 2152 (2004).Google Scholar
[8] Syed-Asif, S. A. and Pethica, J. B., Phil. Mag. A76, 1105 (1997).Google Scholar
[9] Bahr, D. F., Wilson, D. E. and Crowson, D. A., J. Mater. Res. 14, 2269 (1999).Google Scholar
[10] Kramer, D. E., Yoder, K. B. and Gerberich, W. W., Phil. Mag. A81, 2033 (2001).Google Scholar
[11] Xia, J., Li, C. X. and Dong, H., Mater. Sci. Eng. A354, 112 (2003).Google Scholar
[12] Beake, B. D. and Smith, J. F., Phil. Mag. A82, 2179 (2002).Google Scholar
[13] Asif, S. A. S. and Pethica, J. B., Journal of Adhesion 67, 153 (1998).Google Scholar
[14] Lund, A. C., Hodge, A. M. and Schuh, C. A., Appl. Phys. Lett. 85, 1362 (2004).Google Scholar
[15] Schuh, C. A., Lund, A. C. and Nieh, T. G., Acta Mater. 52, 5879 (2004).Google Scholar
[16] Spaepen, F., Acta Metall. 25, 407 (1977).Google Scholar
[17] Argon, A. S., Acta Metall. 27, 47 (1979).Google Scholar
[18] Megusar, J., Argon, A. S. and Grant, N. J., Mater. Sci. Eng. 38, 63 (1979).Google Scholar