Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-28T08:05:24.726Z Has data issue: false hasContentIssue false

High temperature creep strength in a nanodispersion-strengthened ferritic alloy prepared by heavy plastic deformation

Published online by Cambridge University Press:  20 January 2011

David G. Morris
Affiliation:
Department of Physical Metallurgy, CENIM, CSIC, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
Maria Antonia Muñoz-Morris
Affiliation:
Department of Physical Metallurgy, CENIM, CSIC, Avenida Gregorio del Amo 8, 28040 Madrid, Spain
Get access

Abstract

Processes of severe plastic deformation have been investigated for a wide range of ductile alloys over the past decade, generally with an objective of refining the microstructural scale, for example the grain size, but have hardly been considered for intermetallics. This presentation discusses processing of a boride-containing Fe3Al alloy using a multidirectional, high-strain and high-temperature forging technique. Iron aluminides with relatively low Al contents can be regarded as Al-rich ferritic steels with outstanding oxidation-corrosion properties. However, as for many ferritic steels, they show poor creep resistance at temperatures above about 600ºC. The deformation processing leads to a material with large grain size and refined dispersion of thermally-stable boride particles. The particles produce a large increase in creep strength under conditions of moderate stresses and low strain rates at temperatures near 700ºC. This high-strain forging technique can be seen as an intermediate processing method between conventional wrought metallurgy and mechanical-alloying powder metallurgy, whereby an initially coarse and inhomogeneous dispersion of second phase is refined and made more homogeneous, and can be considered as a useful processing technique for a wide range of particle-containing materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Agamennone, R., and Blum, W., in Lecomte-Beckers, J., Carton, F., Schubert, P.J., editors. Proceedings of the 7th Liège Conference. Jülich: Forschungszentrum Jülich (2002) p. 1161.Google Scholar
2. Knezevic, V., and Sauthoff, G., in Lecomte-Beckers, J., Carton, F., Schubert, P.J., editors. Proceedings of the 7th Liège Conference. Jülich: Forschungszentrum Jülich (2002) p. 1289.Google Scholar
3. Schneider, A., and Inden, G., Acta Mater. 53, 519 (2005).Google Scholar
4. Knezevic, V., Balun, J., Sauthoff, G., Inden, G., and Schneider, A., Mater. Sci. Eng. A477, 334 (2008).Google Scholar
5. Yamamoto, K., Kimura, Y., and Mishima, Y., Intermetallics 14, 515 (2006).Google Scholar
6. Alinger, M.J., Odette, G.R. and Hoelzer, D.T., Acta. Mater. 57, 392 (2009).Google Scholar
7. Kim, S., Hunn, J.D., Hashimoto, N., Larson, D.J., Maziasz, P.J., Miyahara, K. and Lee, E.H., J. Nucl. Mater. 280, 264 (2000).Google Scholar
8. Gelles, D.S., J. Nucl. Mater. 233237, 293 (1996).Google Scholar
9. Odette, G.R., Alinger, M.J. and Wirth, B.D., Annu. Rev. Mater. Res. 38, 471 (2008).Google Scholar
10. Alinger, M. J., Odette, G. R., and Hoelzer, D. T., J. Nucl. Mater. 329333, 382 (2004).Google Scholar
11. Revol, S., Launois, S., Baccino, R., Sire, P., Giraud, Y., and Sereni, S., Proc. Conf. EUROPM, 2001, 22–24, Oct. 2001, Nice, France, EMPA, Shrewsbury, vol. 1, p22.Google Scholar
12. Morris, D.G. and Gunther, S., Mater. Sci. Eng., A208, 7 (1996).Google Scholar
13. Morris, D.G., Gutierrez-Urrutia, I., and Muñoz-Morris, M.A., Int. J. of Plasticity, 24, 1205 (2008).Google Scholar
14. Wright, R.N., Anderson, M.T., and Wright, J.K., Mater. Sci. Eng., 258A, 285 (1998).Google Scholar
15. Valiev, R.Z. and Langdon, T.G., Progress in Mater. Sci., 51, 881 (2006).Google Scholar
16. Zhilyaev, A.P. and Langdon, T.G., Progress in Mater. Sci., 53, 893 (2008).Google Scholar
17. Morris, D.G., Gutierrez-Urrutia, I. and Muñoz-Morris, M.A., J. Mater. Sci. 43, 7438 (2008).Google Scholar
18. Morris, D.G. and Muñoz-Morris, M.A., Acta Mater., 58, 6080 (2010).Google Scholar
19. Morris, D.G., Muñoz-Morris, M.A. and Gutierrez-Urrutia, I., Mater. Sci. Eng. A528, 143 (2010).Google Scholar
20. Morris, D.G. and Gunther, S., Intermetallics, 3, 483 (1995).Google Scholar
21. Morris, D.G. and Leboeuf, M., Acta Metall. Mater. 42, 1817 (1994).Google Scholar
22. Morris, D.G. and Morris-Muñoz, M.A., Intermetallics, 7, 1121 (1999).Google Scholar
23. Chao, J., Morris, D.G., Muñoz-Morris, M.A. and Gonzalez-Carrasco, J.L., Intermetallics, 9, 299 (2001).Google Scholar
24. Morris, D.G., Intermetallics, 6, 753 (1998).Google Scholar
25. Morris, D.G., Muñoz-Morris, M.A. and Chao, J., Intermetallics, 12, 821 (2004).Google Scholar
26. Kim, S.M. and Morris, D.G., Acta Mater. 46, 2587 (1998).Google Scholar
27. McKamey, C.G., Maziasz, P.J. and Jones, J.W., J. Mater. Res., 7, 2089 (1992).Google Scholar
28. Krein, R., Schneider, A., Sauthoff, G., and Frommeyer, G., Intermetallics, 15, 1172 (2007).Google Scholar
29. Hanus, P., Bartsch, E., Palm, M., Krein, R., Bauer-Partenheimer, K., and Janschek, P., Intermetallics, 18, 1379 (2010).Google Scholar
30. Palm, M. and Sauthoff, G., Intermetallics, 12, 1345 (2004).Google Scholar
31. Stallybrass, C., Schneider, A., and Sauthoff, G., Intermetallics, 13, 1263 (2005).Google Scholar
32. Kratochvil, P., Pesicka, P.J., Hakl, J., Vlasak, T., and Hanus, P., J. Alloy Compd., 378, 258 (2004).Google Scholar
33. Kratochvil, P., Malek, P., Pesicka, J., Hakl, J., Vlasak, T., and Hanus, P., Kovove Mater., 44, 185 (2006).Google Scholar
34. Morris, D.G., Gutierrez-Urrutia, I., and Muñoz-Morris, M.A., Scripta Mater., 57, 449 (2007).Google Scholar