Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T11:58:22.002Z Has data issue: false hasContentIssue false

High Refractive Index Inorganic-Organic Hybrid Materials for Photonic Applications

Published online by Cambridge University Press:  17 March 2011

Pélagie Declerck
Affiliation:
Hybridpolymere (ORMOCER®) für Mikrosysteme, Fraunhofer Institut Silicatforschung, Neunerplatz 2, Würzburg, 97082, Germany
Ruth Houbertz
Affiliation:
Hybridpolymere (ORMOCER®) für Mikrosysteme, Fraunhofer Institut Silicatforschung, Neunerplatz 2, Würzburg, 97082, Germany
Georg Jakopic
Affiliation:
JOANNEUM RESEARCH Forschungsgesellschaft mbH., weiz, 8160, Austria
Sven Passinger
Affiliation:
Laser Zentrum Hannover e.V., Hannover, 30419, Germany
Boris Chichkov
Affiliation:
Laser Zentrum Hannover e.V., Hannover, 30419, Germany
Get access

Abstract

High refractive index materials are attractive for many photonic elements. For example, 3D photonic bandgap (PBG) materials have been proposed as the basis of many devices. In order to create complete 3D PBGs, materials enabling high refractive index contrast are needed. We here report on novel high refractive index hybrid polymers. They were synthesized by hydrolysis/polycondensation reactions of organo-alkoxysilanes and Ti alkoxide precursors, resulting in organically modified inorganic-oxidic pre-polymer resins. These can be organically cross-linked by one- or two-photon polymerization (2PP). The latter method enables the writing of arbitrary 3D structures. The introduction of Ti into the inorganic-oxidic network accounts for an increase in the material's refractive index, which could be varied between 1.62 and 1.8. Optical properties such as refractive index and absorption losses were determined on an exemplary material system in the lower refractive index range. The influence of the processing parameters on the degree of organic polymerization, and the refractive index of these novel high index materials was investigated in particular. 3D photonic crystal structures were written for the first time in a high-refractive index hybrid polymer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Toader, O., and John, S., Science 292, 1133 (2001).Google Scholar
2. Yablonovitch, E., J. Opt. Soc. Am. B 10, 283 (1993).Google Scholar
3. Joannopoulos, J. D., Meade, R. D., Winn, J. N.: Photonic Crystals, (Princeton University Press, New Jersey, 1995).Google Scholar
4. Henzi, P., Rabus, D.G., Bade, K., Wallrabe, U., and Mohr, J., Proc SPIE 5454, 64 (2004).Google Scholar
5. Sanchez, C., Julián, B., Belleville, P., Popall, M., J. Mater. Chem. 15, 3559 (2005).Google Scholar
6. Houbertz, R., Wolter, H., Dannberg, P., Serbin, J., and Uhlig, S., Proc. SPIE 6126, 612605 (2006).Google Scholar
7. Schmidt, V., Kuna, L., Satzinger, V., Houbertz, R., Jakopic, G., and Leising, G., Proc. SPIE 6476, 64760P (2007).Google Scholar
8. Haas, U., Haase, A., Satzinger, V., Pichler, H., Leising, G., Jakopic, G., Stadlober, B., Houbertz, R., Domann, G., and Schmidt, A., Phys. Rev. B 73, 235339 (2006).Google Scholar
9. Houbertz, R., Domann, G., Cronauer, C., Schmitt, A., Martin, H., Park, J.-U., Fröhlich, L., Buestrich, R., Popall, M., Streppel, U., Dannberg, P., Wöchter, C., Bröuer, A., Thin Solid Films 442, 194 (2003).Google Scholar
10. Judeinstein, P., and Sanchez, C., J. Mater. Chem. 6, 511 (1996).Google Scholar
11. Sanchez, C., and Ribot, F., New J. Chem. 18, 1007 (1994).Google Scholar
12. Houbertz, R., Declerck, P., Passinger, S., Ovsianikov, A., Serbin, J., and Chichkov, B. N., Phys. Stat. Sol. (a) 204, 3662 (2007).Google Scholar
13. Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B. N., Domann, G., Schulz, J., Cronauer, C., Fröhlich, L., Popall, M., Opt. Lett. 28, 301 (2003).Google Scholar
14. Serbin, J., Ovsianikov, A., and Chichkov, B., Opt. Express 12, 5221 (2004).Google Scholar
15. Buestrich, R., Kahlenberg, F., Popall, M., Dannberg, P., Müller-Fiedler, R., and Rösch, O., J. Sol-Gel Sci. Technol. 20, 181 (2001).Google Scholar
16. Declerck, P., Houbertz, R., Jacopic, G., J. Sol-Gel Sci. Technol. (submitted).Google Scholar
17. Schmidt, H., Seiferling, B. in Better Ceramics Through Chemistry II, edited by Brincker, C. J., Clark, D. E., Ulrich, D. R., (Mater. Res. Soc. Proc. 73, Palo Alto, CA, 1986) pp. 739750.Google Scholar
18. Trejo-Valdez, M., Jenouvrier, P., Fick, J., Langlet, M., J. Mater. Sci. 39, 2801 (2004).Google Scholar
19. Luo, X., Zha, C., Luther-Davies, B., J. Non-Cryst. Solids 351, 29 (2005).Google Scholar
20. Joannopoulos, J. D., Villeneuve, P. R., Fan, S., Nature 386, 143 (1997).Google Scholar
21. Croutxé-Barghorn, C., Soppera, O., Simonin, L., Lougnot, D. J., Adv. Mater. Opt. Electron. 10, 25 (2000).Google Scholar
22. Fujishima, A., Rao, T. N., and Tryk, D. A., J. Photochem. Photobiol. C 1, 1 (2000).Google Scholar
23. Langlet, M., Thin Solid Films 472, 253 (2005).Google Scholar
24. Luo, X., Zha, C., and Luther-Davies, B., J. Non-Cryst. Solids 351, 29 (2005).Google Scholar
25. Pianelli, C., Devaux, J., Bebelman, S., Leloup, G., J. Biomed. Mater. Res. 48, 675 (1999).Google Scholar
26. Chang, C.-H., Mar, A., Tiefenthaler, A., Wostratzky, D. in Handbook of Coatings Additives vol. 2, edited by Calbo, L. J. (M. Dekker Inc, 1992), pp. 28.Google Scholar