Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-12T22:50:44.143Z Has data issue: false hasContentIssue false

High quality p-type ZnO film grown on ZnO substrate by nitrogen and tellurium co-doping

Published online by Cambridge University Press:  31 January 2011

Seunghwan Park
Affiliation:
PARK.Seunghwan@nims.go.jp
Tsutomu Minegishi
Affiliation:
tmine@imr.tohoku.ac.jp, Tohoku University, Applied Physics, Sendai, Japan
jinsub Park
Affiliation:
jspark@imr.tohoku.ac.jp, Tohoku University, Applied Physics, Sendai, Japan
Hyunjae Lee
Affiliation:
kalos@cir.tohoku.ac.jp, Tohoku University, Applied Physics, Sendai, Japan
Toshinori Taishi
Affiliation:
taishi@imr.tohoku.ac.jp, Tohoku University, IMR, Sendai, Japan
Ichiro Yonenaga
Affiliation:
yonenaga@imr.tohoku.ac.jp, Tohoku University, IMR, Sendai, Japan
Dongcheol Oh
Affiliation:
ohdongcheol@hoseo.edu, Hoseo university, Defense science, Asan, Korea, Republic of
Mina Jung
Affiliation:
mina-jung@hhu.ac.kr, Korea Maritime University, Major of Semiconductor Physics, Busan, Korea, Republic of
Ji-Ho Chang
Affiliation:
jiho_chang@hhu.ac.kr, Korea Maritime University, Department of Nano Semiconductor, Busan, Korea, Republic of
Soonku Hong
Affiliation:
soonku@cnu.ac.kr, Chungnam national university, Deajeon, Korea, Republic of
Takafumi Yao
Affiliation:
tyao@cir.tohoku.ac.jp, Tohoku University, CIR, Sendai, Japan
Get access

Abstract

Nitrogen and tellurium co-doped ZnO (ZnO:[N+Te]) films have been grown on (0001) ZnO substrate by plasma-assisted molecular beam epitaxy. The electron concentration of tellurium doped ZnO (ZnO:Te) gradually increases, compared that of undoped ZnO (u-ZnO). On the other hand, conductivity of ZnO:[N+Te] changes from n-type to p-type characteristic with a hole concentration of 4×1016 cm-3. However, nitrogen doped ZnO film (ZnO:N) still remain as n-type conductivity with a electron concentration of 2.5×1017 cm-3. Secondary ion mass spectroscopy reveals that nitrogen concentration ([N]) of ZnO:[N+Te] film (2×1021 cm-3) is relatively higher than that of ZnO:N film (3×1020 cm-3). 10 K photoluminescence spectra shows that considerable improvement of emission properties of ZnO:[N+Te] with an emergence of narrow acceptor bound exciton (A°X, 3.359 eV) and donor-acceptor pair (DAP, 3.217 eV), compared with those of u-ZnO. Consequently, high quality p-type ZnO with high N concentration is realized by using Te and N co-doping technique due to reduction of Madelung energy.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bagnall, D. M., Chen, Y. F., Zhu, Z., Shen, M. Y., Goto, T., and Yao, T., Appl. Phys. Lett. 73, 1038 (1998)10.1063/1.122077Google Scholar
2 Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nat. mat. 4, 42 (2004)10.1038/nmat1284Google Scholar
3 Hwang, D. K., Kang, S. H., Lim, J. H., Yang, E. J., Oh, J. Y., Yang, J. H., Park, S. J., Appl. Phys. Lett. 86, 222101 (2005)10.1063/1.1940736Google Scholar
4 Look, D. C., Reynolds, D. C., Litton, C. W., Jones, R. L., Eason, D. B., and Cantwell, G., Appl. Phys. Lett. 81, 1830 (2002)10.1063/1.1504875Google Scholar
5 Yamamoto, T., Katayama-Yoshida, H., Jpn. J. Appl. Phys. 38, L166 (1999)10.1143/JJAP.38.L166Google Scholar
6 Joseph, M., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 38, L2505 (1999)10.1143/JJAP.38.822Google Scholar
7 Kumar, M., Kim, T. H., Kim, S. S., and Lee, B. T., Appl. Phys. Lett. 89, 112103 (2006)10.1063/1.2338527Google Scholar
8 Chen, L. L., Lu, J. G., Ye, Z. Z., Lin, Y. M., Zhao, B. H., Ye, Y. M., Li, J. S., and Zhu, L. P., Appl. Phys. Lett. 87, 252106 (2005)10.1063/1.2146309Google Scholar
9 Yuan, G. D., Ye, Z. Z., Zhu, L. P., Qian, Q., Zhao, B. H., Fan, R. X., Perkins, C. L., Zhang, S. B., Appl. Phys. Lett. 86, 202106 (2005)10.1063/1.1928318Google Scholar
10 Nakahara, K., Takasu, H., Fons, P., Yamada, A., Iwata, K., Matsubara, K., Hunger, R., and Niki, S., J. Cryst. Growth 237, 503 (2002)10.1016/S0022-0248(01)01952-2Google Scholar
11 Fan, Y., Han, J., Gunshor, R. L., Walker, J., Hohnson, N. M., and Nurmikko, A. V., J. Electron. Mater. 24, 131 (1995)10.1007/BF02659885Google Scholar
12 Matsui, H., Saeki, H., Tabata, H. and Kawai, T., Jpn. J. Appl. Phys. 42, 5494 (2003)10.1143/JJAP.42.5494Google Scholar
13 Zhang, S. B., Wei, S.-H., Yan, Y., Physica B 302, 135 (2001)10.1016/S0921-4526(01)00418-5Google Scholar
14 Ahn, K. S., Yan, Y., Shet, S., Deutsch, T., Turner, J., and Al-Jassim, M., Appl. Phys. Lett. 91, 231909 (2007)10.1063/1.2822440Google Scholar
15 Suemune, I., Ashrafi, A.B.M. A., Ebihara, M., Kurimoto, M., Humano, H., Seoung, T. Y., Kim, B. J., Ok, Y. W., Phys. Stat. Sol. (b) 241, 640 (2004)10.1002/pssb.200304290Google Scholar
16 Lu, J., Liang, Q., Zhang, Y., Ye, Z. and Fujita, S., J. Phys. D: Appl. Phys. 40, 3177 (2007)10.1088/0022-3727/40/10/022Google Scholar
17 Wang, X. H., Yao, B., Shen, D. Z., Zhnag, Z. Z., Li, B. H., Wei, Z. P., Lu, Y. M., Zhao, D. Z., Zhang, J. Y., Fan, X. W., Guan, L. X., Cong, C. X., Sol. Stat. Comm. 141, 200 (2007)Google Scholar
18 Wang, L., Giles, N. C., Appl. Phys. Lett. 84, 3049 (2004)10.1063/1.1711162Google Scholar
19 Sun, J. W., Lu, Y. M., Liu, Y. C., Shen, D. Z., Zhang, Z. Z., Yao, B., Li, H. H., Zhang, J. Y., Zhao, D. Z., and Fan, X. W., J. Appl. Phys. 102, 043522 (2007)10.1063/1.2772581Google Scholar