Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T05:46:12.062Z Has data issue: false hasContentIssue false

High Quality a-Ge:H Films and Devices Through Enhanced Plasma Chemistry

Published online by Cambridge University Press:  01 February 2011

Erik V. Johnson
Affiliation:
erik.johnson@polytechnique.edu, Ecole Polytechnique, LPICM, 10 Route de Saclay, Palaiseau Cedex, F-91128, France, (33) 1 69 33 32 17, (33) 1 69 33 30 06
Pere Roca i Cabarrocas
Affiliation:
pere.roca@polytechnique.edu, Ecole Polytechnique, LPICM (CNRS, UMR 7647), Palaiseau Cedex, F-91128, France
Get access

Abstract

We present a material study on RF PECVD-grown a-Ge:H showing that thin films of such material can be produced without using the conventional techniques of high power density or powered-electrode substrate placement. We demonstrate the production of material with PDS signatures superior to material produced at ten times higher power density. This is achieved through the use of Ar and H2 dilution and by growing the films at high pressures under conditions where nanocrystals formed in the gas phase contribute significantly to the growth as confirmed by HRTEM. The conditions described result in material which demonstrates activated conduction down to room temperature. Additionally, the quality of the material has been demonstrated through its application in n-i-p diodes. A spectral response at 0.9um of 0.38 and an AM1.5 efficiency of 2.1% have been demonstrated utilizing an absorber layer thickness of only 60nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Karg, F.H., Bohm, H., and Pierz, K., J. Non-Cryst. Solids 114, 477 (1989).Google Scholar
[2] Turner, W.A., et al, J. Appl. Phys. 67, 7430 (1990).Google Scholar
[3] Aoki, T., Kato, S., Nishikawa, Y., and Hirose, M., J. Non-Cryst. Solids 114, 798 (1989).Google Scholar
[4] Matsuda, A. and J., K. Tanaka Non-Cryst. Solids 97 & 98, 1367 (1987).Google Scholar
[5] Shibata, N., Tanabe, A., Hanna, J., Oda, S., and Shimizu, I., Jpn. J. Appl. Phys. 25, L540 (1986).Google Scholar
[6] Niu, Xuejin, Dalal, V.L., J. Appl. Phys. 98, 096103 (2005).Google Scholar
[7] Zanzig, L., Beyer, W., and Wagner, H. Appl. Phys. Lett. 67, 1567 (1995).Google Scholar
[8] Guenier, M.E., Kleider, J.P., Chatterjee, P., Cabarrocas, P. Roca i, and Poissant, Y., J. Appl. Phys. 92, 4959 (2002).Google Scholar
[9] Johnson, E.V. and Cabarrocas, P. Roca i, (2007) Solar Energy Mater. and Solar Cells, doi:10.1016/j.solmat.2007.01.019.Google Scholar
[10] Cabarrocas, P.Roca i, Chévrier, J.B., Huc, J., Lioret, A., Parey, J.Y., and Schmitt, J.P.M., J. Vac. Sci. Technol. A 9, 2331 (1991).Google Scholar
[11] Drevillon, B. and Godet, C., J. Appl. Phys. 64, 145 (1988).Google Scholar
[12] Blanco, J.R., McMarr, P.J., Vedam, K., and Ross, R.C., J. Appl. Phys. 60, 3724 (1986).Google Scholar
[13] Yehoda, J.E., Yang, B., Vedam, K., and Messier, R., J. Vac. Sci. Technol. A 6, 1631 (1988).Google Scholar
[14] Zhu, J., Dalal, V.L., Ring, M.A., and Guitterez, J.J., Cohen, J.D., J. Non-Cryst. Solids 338-340, 651 (2004).Google Scholar
[15] Kusian, W., Gunzel, E. and Plattner, R.D., Solar Energy Materials 23, 303 (1991).Google Scholar
[16] Doyle, J.R., Doughty, D.A., and Gallagher, A., J. Appl. Phys. 69, 4169 (1991).Google Scholar