Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T12:39:37.587Z Has data issue: false hasContentIssue false

High Pressure Lattice Instabilities and Structural Phase Transformations in Solids from Ab-Initio Lattice Dynamics

Published online by Cambridge University Press:  10 February 2011

Stefano Baroni
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy Centre Européen de Calcul Atomique et Moléculaire, Lyon, France
Paolo Giannozzi
Affiliation:
Istituto Nazionale per la Fisica della Materia, Italy Scuola Normale Superiore, Pisa, Italy
Get access

Abstract

This paper is devoted to some recent applications of density-functional perturbation theory to the prediction of lattice instabilities occurring in ionic solids at high pressure. We first briefly review some work aimed at understanding the interplay between shear instabilities and phonon softening in the pressure-induced phase transformations of Cesium halides and hydride. We then report on preliminary results of an attempt of ours to apply similar techniques to the long-standing problem of the pressure-induced amorphization of quartz.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Huang, T.-L. and Ruoff, A.L., Phys. Rev. B 29, 1112 (1984);Google Scholar
Huang, T.-L., Brister, K.E., and Ruoff, A.L., Phys. Rev. B 30, 2968 (1984);Google Scholar
Vohra, Y.K., Brister, K.E., Weir, S.T., Duelos, S.J., and Ruoff, A.L., Science 231, 1136 (1986).Google Scholar
[2] Knittle, E. and Jeanloz, R., Science 223, 53 (1984);Google Scholar
Knittle, E. and Jeanloz, R., J. Phys. Chem. Solids 46, 1179 (1985);Google Scholar
Knittle, E., Rudy, A. and Jeanloz, R., Phys. Rev. B 31, 588 (1985).Google Scholar
[3] Vohra, Y.K., Duelos, S.J. and Ruoff, A.L., Phys. Rev. Lett. 54, 570 (1985).Google Scholar
[4] Christensen, N.E. and Satpathy, S., Phys. Rev. Lett. 55, 600 (1985);Google Scholar
Satpathy, S., Christensen, N.E. and Jepsen, O., Phys. Rev. B 32, 6793 (1985).Google Scholar
[5] Baroni, S. and Giannozzi, P., Phys. Rev. B 35, 765 (1987).Google Scholar
[6] Anderson, P.W. and Blount, E.I., Phys. Rev. Lett. 14, 217 (1965).Google Scholar
[7] Mao, H.K., Wu, Y., Hemley, R.J., Chen, L.C., Shu, J.F., and Finger, L.W., Science 246, 649 (1989);Google Scholar
Mao, H.K., Wu, Y., Hemley, R.J., Chen, L.C., Shu, J.F., Finger, L.W., and Cox, D.E., Phys. Rev. Lett. 64, 1749 (1990).Google Scholar
[8] Buongiorno Nardelli, M., Baroni, S., and Giannozzi, P., Phys. Rev. Lett. 69, 1069 (1992);Google Scholar
Buongiorno Nardelli, M., Baroni, S., and Giannozzi, P., Phys. Rev. B 51, 8060 (1995).Google Scholar
[9] Baroni, S., Giannozzi, P., and Testa, A., Phys. Rev. Lett. 58, 1861 (1987);Google Scholar
Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S., Phys. Rev. B, 43, 7231 (1991).Google Scholar
[10] Duelos, S. J., Vohra, Y. K., Ruoff, A. L., Filipek, S. and Baranowski, B., Phys. Rev. B 36, 7664 (1987).Google Scholar
[11] Hochheimer, H. D., Strossner, K., Honle, W., Baranowski, B., and Filipek, S., Z. Phys. Chem. 143, 139 (1985).Google Scholar
[12] Bashkin, I. O., Degtyareva, V. F., Dergachev, Y. M., and Ponyatovskii, E. G., Phys. Status Solidi (B) 114, 731 (1982).Google Scholar
[13] Ghandehari, K., Huo, H., Ruoff, A.L., Trail, S.S., and Di Salvo, F.J., Phys. Rev. Lett. 74, 2264 (1995).Google Scholar
[14] Saitta, A.M., Alfè, D., de Gironcoli, S., and Baroni, S., Phys. Rev. Lett. 78, 4958 (1997).Google Scholar
[15] Kingma, K.J., Meade, C., Hemley, R.J., Mao, H.K., and Veblen, D.R., Science 259, 666 (1993);Google Scholar
Kingma, K.J., Hemley, R.J., Mao, H.K., and Veblen, D.R., Phys. Rev. Lett. 70, 3927 (1993).Google Scholar
[16] Mishima, O., Calvert, L.D., and Whalley, E., Nature 310, 393 (1984).Google Scholar
[17] Fujii, Y., Kowaka, M., and Onodera, A., J. Phys. C 18, 789 (1985).Google Scholar
[18] Nguyen, J.H., Kruger, M.B., and Jeanloz, R., Phys. Rev. Lett. 78, 1936 (1997).Google Scholar
[19] Kruger, M.B. and Jeanloz, R., Science 249, 647 (1990).Google Scholar
[20] Binggeli, N., Keskar, N.R., Chelikowsky, J.R., Phys. Rev. B 49, 3075 (1994).Google Scholar
[21] Chaplot, S.L. and Sikka, S.K., Phys. Rev. Lett. 71, 2674 (1993).Google Scholar
[22] Watson, G.W. and Parker, S.C., Phys. Rev. B 52, 13306 (1995).Google Scholar
[23] Wentzcovitch, R.M. et ai, these proceedings;Google Scholar
Wentzcovitch, R.M., da Silva, C., Chelikowsky, J.R., Binggeli, N., Phys. Rev. Lett. 80, 2149 (1998).Google Scholar
[24]For Si we use the same pseudopotential as in e.g. Ref. [9]; for O we have constructed a norm-conserving pseudopotential using the recipe of Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991), and a core radius of 1.4 a.u. for both s and p states.Google Scholar
[25] Gonze, X., Charlier, J.C., Allan, D.C., and Teter, M.P., Phys. Rev B 50, 13035 (1994).Google Scholar