Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:19:04.847Z Has data issue: false hasContentIssue false

High Performance Lithium-ion Battery Electrode: Silicon Coated on Vertically Aligned Carbon Nanofibers

Published online by Cambridge University Press:  12 June 2013

Steven Klankowski
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA.
Ronald Rojeski
Affiliation:
Catalyst Power Technologies, 200 Carlyn Avenue, Suite C, Campbell, CA 95008, USA.
Jun Li
Affiliation:
Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA.
Get access

Abstract

This study reports a high-performance hybrid lithium-ion anode material using coaxially coated silicon shells on vertically aligned carbon nanofiber (VACNF) cores. The robust bush-like highly conductive VACNFs effectively connect high-capacity silicon shells for lithium-ion storage. Such architecture allows the Si shells to freely expand/contract in the radial direction during lithium-ion insertion/extraction. A high specific capacity of 3000-3650 mAh(gSi)-1 was obtained at C/1 rate, comparable to the maximum value of amorphous Si, and ∼89% of the capacity was retained after 100 charge-discharge cycles. The lithium-ion storage capacity remains nearly the same from C/10 to C/0.5 rates. The ability to obtain high capacity at significantly improved power rates while maintaining the extraordinary cycle stability demonstrates the utilization of the unique properties of such hybrid architecture for lithium-ion batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. and Van Schalkwijk, W., Nat Mater, 2005, 4, 366377.CrossRefGoogle Scholar
Arthur, T. S., Bates, D. J., Cirigliano, N., Johnson, D. C., Malati, P., Mosby, J. M., Perre, E., Rawls, M. T., Prieto, A. L. and Dunn, B., MRS Bull., 2011, 36, 523531.CrossRefGoogle Scholar
Long, J. W., Dunn, B., Rolison, D. R. and White, H. S., Chem. Rev., 2004, 104, 44634492.CrossRefGoogle Scholar
Tarascon, J. M. and Armand, M., Nature, 2001, 414, 359367.CrossRefGoogle Scholar
Molenda, J. and Marzec, J., Functional Materials Letters, 2008, 1, 9195.CrossRefGoogle Scholar
Boukamp, B. A., Lesh, G. C. and Huggins, R. A., J. Electrochem Soc, 1981, 128, 725729.CrossRefGoogle Scholar
Chan, C. K., Peng, H. L., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A. and Cui, Y., Nat. Nanotechnol., 2008, 3, 3135.CrossRefGoogle Scholar
Wang, W. and Kumta, P. N., ACS Nano, 2010, 4, 22332241.CrossRefGoogle Scholar
Melechko, A. V., Merkulov, V. I., McKnight, T. E., Guillorn, M. A., Klein, K. L., Lowndes, D. H. and Simpson, M. L., J. Appl. Phys., 2005, 97.Google Scholar
Meyyappan, M., Delzeit, L., Cassell, A., Hash, D., Plasma Sources Sci T, 2003, 12, 205216.CrossRefGoogle Scholar
Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P. and Provencio, P. N., Science, 1998, 282, 11051107.CrossRefGoogle Scholar
Cui, L. F., Yang, Y., Hsu, C. M. and Cui, Y., Nano Lett., 2009, 9, 33703374.CrossRefGoogle Scholar
Chen, P. C., Xu, J., Chen, H. T. and Zhou, C. W., Nano Research, 2011, 4, 290296.CrossRefGoogle Scholar
Cruden, B. A., Cassell, A. M., Ye, Q. and Meyyappan, M., J Appl Phys, 2003, 94, 40704078.CrossRefGoogle Scholar
Liu, J., Essner, J. and Li, J., Chem. Mater., 2010, 22, 50225030.CrossRefGoogle Scholar
Ngo, Q., Yamada, T., Suzuki, M., Ominami, Y., Cassell, A. M., Li, J., Meyyappan, M. and Yang, C. Y., IEEE T Nanotechnol 2007, 6, 688695.Google Scholar
Klankowski, S. A., Rojeski, R. A., Cruden, B. A., Liu, J., Wu, J. and Li, J., J. Mater Chem A, 2013, 1, 10551064.CrossRefGoogle Scholar
Petrov, I., Barna, P., Hultman, L. and Greene, J., J Vac Sci Technol A, 2003, 21, S117S128.CrossRefGoogle Scholar
Messier, R., Giri, A. and Roy, R., J. Vac. Sci. Technol A, 1984, 2, 500503.CrossRefGoogle Scholar
Thornton, J. A., J Vac. Sci. Technol A 1986, 4, 30593065.CrossRefGoogle Scholar
Chaney, S. B., Shanmukh, S., Dluhy, R. A. and Zhao, Y. P., Appl Phys Lett, 2005, 87, 031908–031903.CrossRefGoogle Scholar
Wan, W., Zhang, Q., Cui, Y. and Wang, E., J Phys-Condens Matter, 2010, 22.Google Scholar
Szczech, J. R. and Jin, S., Energ Environ Sci, 2011, 4, 5672.CrossRefGoogle Scholar