Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T06:21:40.026Z Has data issue: false hasContentIssue false

High Mobility Non-Hydrogenated Low Temperature Polysilicon TFTs

Published online by Cambridge University Press:  15 February 2011

F. Plais
Affiliation:
Thomson-CSF LCR, 91404 Orsay cedex, France
P. Legagneux
Affiliation:
Thomson-CSF LCR, 91404 Orsay cedex, France
T. Kretz
Affiliation:
Thomson-CSF LCR, 91404 Orsay cedex, France
R. Stroh
Affiliation:
Thomson-CSF LCR, 91404 Orsay cedex, France
O. Huet
Affiliation:
Thomson-CSF LCR, 91404 Orsay cedex, France
D. Pribat
Affiliation:
Thomson-CSF LCR, 91404 Orsay cedex, France
Get access

Abstract

We have fabricated polysilicon (poly-Si) thin film transistors (TFTs) using a standard 4-mask sequence, with self-aligned ion implantation for source and drain doping. The active layer was obtained by solid phase crystallisation of high purity Si2H6-deposited amorphous Si, whereas the gate oxide was synthesised by a novel plasma deposition technique, namely distributed electron cyclotron resonance plasma enhanced chemical vapour deposition (DECR PECVD). We have obtained high carrier mobilities (70 cm2V−1s−1 for electrons and 40 cm2V−1s−1 for holes) with an excellent uniformity and without the need for a post-hydrogenation treatment. Moreover, we show that the TFT characteristics are practically insensitive to hot carrier effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adachi, K., Solid State Technology, January 1993, p. 63.Google Scholar
2. Wu, I.W., Lewis, A., Huang, T. and Chiang, A., IEEE Electron Device Lett. EDL–10, 123 (1989).Google Scholar
3. Brotherton, S.D., Ayres, J.R. and Young, N.D., Solid State Electronics 34, 671 (1991).Google Scholar
4. Mitra, U., Khan, B., Venkatesan, M. and Stupp, E.H., Conference Record of The 1991 International Display Research Conference (San Diego), IEEE 91CH-3071–8, 207.Google Scholar
5. Bhattacharya, S., Kovelamudi, R., Batra, S., Banerjee, S., Nguyen, B.Y. and Tobin, P., IEEE Electron Device Lett. EDL–13, 491 (1992).Google Scholar
6. Young, N.D., Gill, A. and Edwards, M.J., Semicond. Sci. Technol. 7, 1183 (1992).Google Scholar
7. Fortunato, G., Pecora, A., Tallarida, G., Mariucci, L., Reita, C. and Migliorato, P., IEEE Trans. Electron Devices, 1994, in press.Google Scholar
8. Kretz, T., Stroh, R., Legagneux, P., Huet, O., Magis, M. and Pribat, D., to appear in Polycrystalline semiconductors III - Physics and Technology, Solid State Phenomena Vol. XXX, edited by Strunk, H.P., Wemer, J.H., Fortin, B. and Bonnaud, O. (Trans. Tech., Zürich, 1994).Google Scholar
9. Pribat, D., Plais, F., Legagneux, P., Kretz, T., Stroh, R., Huet, O., Walaine, C. and Magis, M., Rev. Techn. Thomson-CSF, March 1994, in press.Google Scholar
10. Voutsas, A.T. and Hatalis, M.K., J. Electrochem. Soc. 140, 871 (1993).Google Scholar
11. Jiang, N., Hugon, M.C., Agius, B., Kretz, T., Plais, F., Pribat, D., Carriere, T. and Puech, M., Jpn. J. Appl. Phys. 31, L1404 (1992).Google Scholar
12. Chen, S., Boyce, J.B., Wu, I.W., Chiang, A., Johnson, R.I., Anderson, G.B. and Ready, S.E., proceedings of Eurodisplay'93 (Strasbourg), p. 195.Google Scholar
13. Young, N., private communication.Google Scholar