Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T06:05:49.375Z Has data issue: false hasContentIssue false

High Density Active-Site MnO2 Nanofibers for Energy Storage and Conversion Applications

Published online by Cambridge University Press:  10 February 2011

T. D. Xiao
Affiliation:
US Nanocorp, Inc., 20 Washington Avenue, North Haven, CT 06473
D. E. Reisner
Affiliation:
US Nanocorp, Inc., 20 Washington Avenue, North Haven, CT 06473
P. R. Strutt
Affiliation:
US Nanocorp, Inc., 20 Washington Avenue, North Haven, CT 06473
Get access

Abstract

This investigation involves the synthesis of MnO2 nanofibrous materials, via an aqueous chemical synthesis route. A critical step in the synthesis is the extended period of the refluxing of the reactive constituents, which enables the gradual transformation of the initial amorphous nanoparticles into a random-weave nanofibrous structure, in the form of a bird's nest superstructure. The bird's nest has a diameter of approximately 10 μm, which is an assemblage of many individual nanofibers with a diameter of about 15 nm, and a length up to 1 μm. Partial transformation of the nanostructured MnO2 realizes a novel bimodal morphology, which combines a high density of chemically active sites with an enhanced percolation rate. Characterization of these nanofibers include SEM, TEM, surface area, and chemical analysis. High resolution TEM observations reveals that the as-synthesized MnO2 nanofibers contain lattice defects, including molecular pores, meso- and micro-pores.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Xiao, T.D., Strutt, P.R., Kear, B.H., Chen, H., and Wang, D.M., US Patent application filed 11/18/96.Google Scholar
[2]. Kordesch, K. and Weissenbacher, M., J. Power Source 51, 62 (1994).Google Scholar
[3]. Rossouw, M.H., Liles, D.C., Thackeray, M.M., David, W.I.F., and Hull, S., Mat. Res. Bull. 27, 221 (1992).10.1016/0025-5408(92)90216-MGoogle Scholar
[4]. Kao, W.H., Weibel, V.J., and Root, M.J., J. Electrochem. Soc. 139, 1223 (1992).10.1149/1.2069386Google Scholar
[5]. DeGuzman, R.N., Shen, Y.F., Neth, E.J., Suib, S.L., O_Young, C.L., Levine, S., and Newsan, J.M., Chem. Mater. 6, 815 (1994).10.1021/cm00042a019Google Scholar
[6]. Feng, Q., Hanoh, H., and Ooi, K., J. Electrochem. Soc. 141, L135 (1994).10.1149/1.2059258Google Scholar
[7]. Ohzuku, T., Kitagawa, M., Sawai, K., and Hirai, T., J. Electrochem. Soc. 138, 360 (1991).10.1149/1.2085589Google Scholar
[8]. Parravano, G., in “Procs. 4th Intnl. Cong, on Catalysis,” vol. 1, Moscow, 149 (1971).Google Scholar
[9]. Goldstein, J.R. and Tseng, A.C.C., J. Phys. Chem. 76, 3646 (1972).10.1021/j100668a025Google Scholar
[10]. Onuchukwn, A.I. and Burn, A.B., Mater. Chem. Phys. 15, 131 (1986).10.1016/0254-0584(86)90118-5Google Scholar
[11]. Tarascon, J.M., Wang, E., and Shokoohi, F.K., Electrochem. Soc. 138, 2859 (1991).10.1149/1.2085330Google Scholar
[12]. Byström, A. and Byström, A.M., Acta Cryst. 3, 146 (1950).10.1107/S0365110X5000032XGoogle Scholar
[13]. Post, J.E., Von Dreele, R.B., and Buseck, P.R., Acta Cryst. B38, 1056 (1982).10.1107/S0567740882004968Google Scholar
[14]. Faulring, G.M., Zwicker, W.K., and Forgeng, W.D., Am. Mineral. 45, 946 (1960).Google Scholar
[15]. Richmond, W.E. and Fleischer, M., Am. Mineral. 27, 607 (1942).Google Scholar
[16]. Ramsdell, L.S., Am. Mineral. 27, 611 (1942).Google Scholar
[17]. Gruner, J.W., Am. Mineral. 28, 497 (1943).Google Scholar
[18]. Mc, A. Mathieson, L. and Wadsley, A.D., Am. Mineral. 35, 99 (1950).Google Scholar
[19]. Ooi, K., Miyai, Y., and Katoh, S., Sep. Sci. Technol. 22, 1779 (1987).10.1080/01496398708058434Google Scholar
[20]. Tsui, M. and Abe, M., Solvent Extrant. Ion Exch. 2, 253 (1984).Google Scholar
[21]. McKenzie, R.M., Mineral. Magazine 38, 493 (1971).10.1180/minmag.1971.038.296.12Google Scholar
[22]. Xiao, T.D., Bokimi, , Benaissa, M., Pérez, R., Strutt, Peter R., and Yacamán, Miguel José, Acta Mater. 45, 1685 (1997).10.1016/S1359-6454(96)00210-8Google Scholar
[23]. Thackeray, M.M., J. Electrochem. Soc. 142, 25582563 (1995).10.1149/1.2050053Google Scholar
[24]. Armstrong, A.R., & Bruce, P.G., Nature 381, 499500 (1996).10.1038/381499a0Google Scholar
[25]. Golden, D.C., Chen, C.C., Dixon, J.B., Science 231, 717719 (1986).10.1126/science.231.4739.717Google Scholar
[26]. Shen, Y.F., Zerger, R.P., DeGuzman, R.N., Suib, S.L., McCurdy, L., Potter, P.I., & Young, C.L., Science 260, 511515 (1993).10.1126/science.260.5107.511Google Scholar
[27]. Benaissa, M., Yacaman, M.J., Xiao, T.D., and Strutt, P.R., Appl. Phys. Lett. 70(16), 2120 (1997)10.1063/1.119253Google Scholar