Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T08:17:18.155Z Has data issue: false hasContentIssue false

Hierarchial Structure and Physical Properties of Natural Cellulosic Fibers

Published online by Cambridge University Press:  21 February 2011

Ludwig Rebenfeld*
Affiliation:
TRI/Princeton, P.O. Box 625, Princeton, NJ 08542 USA
Get access

Abstract

Natural cellulosic fibers have in common the fact that cellulose is the key polymeric component in the structure, although the chemical composition varies widely depending on the specific source of the fibers. Cellulose is a long-chain linear condensation polymer of β-D-glucose with three free hydroxyl groups on each monomeric unit, resulting in strong inter- and intramolecular hydrogen bonds. Because of the hydrogen bond network, and also due to restricted rotation around the polymeric 1,4- β-linkage, cellulose is a rigid and stiff chain with a Tg well above the chemical decomposition temperature.

Despite the high Tg native cellulose is invariably highly crystalline as a result of the biosynthetic process. In naturally occurring cellulosic fibers, the cellulose crystallites are aggregated into fibrils which constitute the underlying building blocks of the fiber. In cotton, the fibrils are laid down during the development or growth of the fiber in the form of concentric layers. The fibrils are disposed at an angle of 23° with respect to the fiber axis and thus they describe a helical pattern. The sense of the helix reverses frequently along the length of the fiber. This morphology is unique to cotton; other cellulosic fibers such as ramie and jute have similar fibrillar structures, but fibrillar angles in the 5 to 10 degree range, with no reversals. Wood fibers, on the other hand, are structurally more heterogeneous and may be considered as composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)