Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T19:07:44.200Z Has data issue: false hasContentIssue false

Heterogeneous Microcomposite Materials Based on Porous Matrices and Liquid Crystals

Published online by Cambridge University Press:  10 February 2011

F. M. Aliev
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
G. P. Sinha
Affiliation:
Department of Physics and Materials Research Center, PO BOX 23343, University of Puerto Rico, San Juan, PR 00931-3343, USA
Get access

Abstract

Heterogeneous microcomposite materials based on porous matrices with randomly oriented, interconnected pores (porous glasses with average pore sizes of 100 Å and 1000 Å) and parallel cylindrical pores (Anopore membranes with pore diameters of 200 Å and 2000 Å) impregnated with liquid crystals (LC) were investigated by dynamic light scattering and dielectric spectroscopy. The physical properties of confined LC are very different from that of the bulk. One of the new properties among others observed for LC confined in porous matrices is the slow relaxational process which does not exist in the bulk LC and a wide spectrum of relaxation times (10−8 – 10)s which were established in both dynamic light scattering and dielectric experiments. We found that for LC dispersed in porous matrices with randomly distributed interconnected pores, the contribution to physical properties and observed behavior from interfacial layers dominates and almost completely determines low frequency relaxational process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Drzaic, P. S., Liquid Crystal Dispersions, (World Scientific, Singapore, 1995).Google Scholar
2. Aliev, F. M. and Breganov, M. N., Sov.Phys. J. Experim. Theoret. Phys., 68, 70, (1989).Google Scholar
3. Wu, X-l., Goldburg, W. I., Liu, M. X., and Xue, J. Z, Phys. Rev. Lett., 69, 470, (1992).Google Scholar
4. Iannacchione, G. S., Crawford, G. P., Zumer, S., Doane, J. W., and Finotello, D., Phys. Rev. Lett., 71, 2595, (1993).Google Scholar
5. Tripathi, S., Rosenblatt, C., and Aliev, F. M., Phys. Rev. Lett., 72, 2725, (1994).Google Scholar
6. Bellini, T., Clark, N. A., and, Schaefer, D. W., Phys. Rev. Lett., 74, 2740 (1995).Google Scholar
7. Zidansek, A., Kralj, S., Lahajnar, G., and Blinc, R., Phys. Rev. E51, 3332, (1995).Google Scholar
8. Zhang, Z. and Chakrabarti, A., Phys.Rev., E52, 4991, (1995).Google Scholar
9. Crawford, G. P., Yang, D. K., Zumer, S., Finotello, D., and Doane, J. W., Phys. Rev., A43, 2943, (1991)Google Scholar
10. Crawford, G. P., Allender, D. W., and Doane, J. W., Phys. Rev., A45, 8693 (1992).Google Scholar
11. Crawford, G. P., Ondris-Crawford, R., Zumer, S., and Doane, J. W., Phys.Rev.Lett.,70, 1838, (1993).Google Scholar
12. Ondris-Crawford, R. J., Crawford, G. P., Doane, J. W., and Zumer, S., Phys.Rev., E48, 1998, (1993).Google Scholar
13. Iannacchione, G. S. and Finotello, D., Phys. Rev. E50, 4780, (1994).Google Scholar
14. Crandall, K. A., Rosenblatt, C., and Aliev, F. M., Phys.Rev., E53, 636, (1996).Google Scholar
15. Aliev, F. M., in Access in Nanoporous Materials, edited by Pinnavaia, T. J. and Thorpe, M. F., (Plenum Press, New York, 1995), pp. 335354.Google Scholar
16. Finotello, D. and Iannacchione, J., Int. Journ. Mod. Phys., B9, 109, 1995.Google Scholar
17. Crawford, G. P. and Zumer, S., Int. Journ. Mod. Phys., B9, 331, 1995.Google Scholar
18. Williams, G., J. Non-Cryst. Solids, 131–133, 1 (1991).Google Scholar
19. Cummins, P. G., Danmur, D. A., and Laidler, D. A., MCLC, 30, 109, (1975).Google Scholar
20. Scaife, B. K. P., Principles of Dielectrics, Oxford: Clarendon Press (1989).Google Scholar