Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-24T06:26:29.273Z Has data issue: false hasContentIssue false

Heteroepitaxial Growth of Sic on Si - Highly Mismatched System -

Published online by Cambridge University Press:  28 February 2011

Hiroyuki Matsunami*
Affiliation:
Department of Electrical Engineering, Kyoto University, Kyoto 606, Japan
Get access

Abstract

Single crystals of cubic(beta) SiC were heteroepitaxially grown on Si to ameliorate the large lattice mismatch of 20 %. The structure and the role of the carbonized layer used for crystal growth are discussed. Single crystals were successfully grown on Si(100) and(111). Antiphase domains on Si(100) were examined to obtain smooth surfaces. The use of Si(100) off-axis substrates oriented towards [011] allowed the successufulelimination of the antiphase domains. Anisotropy was found in the electrical properties of SiC on off-axis substrates. Possible applications are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nelson, W.E., Halden, F.A. and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).CrossRefGoogle Scholar
2 Ferry, D.K., Phys. Rev. B12, 2361 (1975).CrossRefGoogle Scholar
3 Matsunami, H.. in Thin Films from Free Atoms and Particles, edited by Klabunde, K.J. (Academic Press, 1985) pp. 301324.CrossRefGoogle Scholar
4 Matsunami, H., Nishino, S. and Ono, H., IEEE Trans. Electron Devices ED–28, 1235 (1981).CrossRefGoogle Scholar
5 Matsunami, H., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T.L. and Wood, C. (Mater. Res. Soc. Proc. 97, Pittsburgh, PA 1987) pp. 171182.Google Scholar
6 Nishino, S., Suhara, H.. Ono, H. and Matsunami, H., J. Appl. Phys. 61. 4889 (1987).CrossRefGoogle Scholar
7 Shibahara, K., Doctor thesis in Kyoto University, 1988.Google Scholar
8 Carter, C.H. Jr, Davis, R.F. and Nutt, S.R., J. Mater. Res. 1. 811 (1986).CrossRefGoogle Scholar
9 Iwami, M., Kusaka, M., Hirai, M., Nakamura, H., Koshikawa, T., Shibahara, K. and Matsunami, H., to be published.Google Scholar
10 Shibahara, K., Nishino, S. and Matsunami, H., J. Cryst. Growth 78, 538 (1986).CrossRefGoogle Scholar
11 Graul, J. and Wagner, E., Appl. Phys. Lett. 21, 67 (1972).CrossRefGoogle Scholar
12 Kroemer, H., Polasko, K.J. and Wright, S.C., Appl. Phys. Lett. 36, 763 (1980).CrossRefGoogle Scholar
13 Shibahara, K., Nishino, S. and Matsunami, H., Ext. Abstr. 18th Conf. Solid State Devices and Materials (1986) p. 717.Google Scholar
14 Shibahara, K., Nishino, S. and Matsunami, H., in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T.L. and Wood, C. (Mater. Res. Soc. Proc. 97, Pittsburgh, PA 1987) pp. 183188.Google Scholar
15 Shibahara, K., Nishino, S. and Matsunami, H., Appl. Phys. Lett. 50, 1888 (1987).CrossRefGoogle Scholar
16 Shibahara, K. and Matsunami, H., to be published.Google Scholar
17 Shibahara, K. and Matsunami, H., to be published.Google Scholar
18 Shibahara, K., Takeuchi, T., Saitoh, T., Nishino, S. and Matsunami, H. in Novel Refractory Semiconductors, edited by Emin, D., Aselage, T.L. and Wood, C. (Mater. Res. Soc. Proc. 97, Pittsburgh, PA 1987) pp. 247252.Google Scholar
19 Shibahara, K. Saito, T., Nishino, S. and Matsunami, H., IEEE Electron Device Lett. EDL–7, 692 (1986).CrossRefGoogle Scholar