Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T23:19:22.548Z Has data issue: false hasContentIssue false

Heteroepitaxial CxSil−X/Si(100) Metastable Alloys

Published online by Cambridge University Press:  28 February 2011

J.B. Posthill
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
R.A. Rudder
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
S.V. Hattangady
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
G.G. Fountain
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
T.P. Humphreys
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina, 27695-8202
R.J. Nemanich
Affiliation:
Department of Physics, North Carolina State University, Raleigh, North Carolina, 27695-8202
N.R. Parikh
Affiliation:
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255
R.J. Markunas
Affiliation:
Research Triangle Institute, Research Triangle Park, North Carolina 27709-2194
Get access

Abstract

Metastable CxSi1− epitaxial films have been grown on Si(100) by remote plasmaenhanced chemical vapor deposition. Carbon concentrations of ∼ 3 atomic percent have been achieved at a growth temperature of 725 °C. No evidence for the formation or precipitation of SiC was found using x-ray diffraction, Raman scattering spectroscopy, IR. reflectance, or transmission electron microscopy. IR reflectance data gives a preliminary indication that the carbon has been incorporated onto substitutional sites in the Si lattice.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Posthill, J.B., Rudder, R.A., Hattangady, S.V., Fountain, G.G., and Markunas, R.J., Appl. Phys. Lett. 56, 734 (1990).10.1063/1.102696Google Scholar
2. Shockley, W., Patent, U.S. No. 2,569,347 (25 Sept. 1951).Google Scholar
3. Kroemer, H., Proc. IRE 45, 1535 (1957).10.1109/JRPROC.1957.278348Google Scholar
4. Patton, G.L., Iyer, S.S., Delage, S.L., Tiwari, S., and Stork, J.M.C., IEEE Electron Device Lett. 9, 165 (1988).10.1109/55.677Google Scholar
5. Pearsall, T.P. and Bean, J.C., IEEE Electron Device Lett. 7, 308 (1986).10.1109/EDL.1986.26383Google Scholar
6. Olesinski, R.W. and Abbaschian, G.J., Bull. of Alloy Phase Diagrams 5, 486 (1984) and references therein.10.1007/BF02872902Google Scholar
7. Kern, W. and Puotinen, D.A., RCA Rev. 13, 187 (1970).Google Scholar
8. Rudder, R.A., Hendry, R.C., and Markunas, R.J., J. Vac. Sci. Tech. A 7, 802 (1989).10.1116/1.575844Google Scholar
9. Rudder, R.A., Hattangady, S.V., Posthill, J.B., and Markunas, R.J., Mater. Res. Soc. Symp. Proc. 116, 529 (1988).10.1557/PROC-116-529Google Scholar
10. Fountain, G.G., Rudder, R.A., Hattangady, S.V., Lindorme, P.S., and Markunas, R.J., J. Appl. Phys. 63, 4744 (1988).10.1063/1.340133Google Scholar
11. Windisch, D. and Becker, P., Philos. Mag. A 58, 435 (1988).10.1080/01418618808209936Google Scholar
12. Anastassakis, E., Pincznk, A., Burstein, E., Pollak, F.H., and Cardona, M., Sol. State Comm. 8, 133 (1970).10.1016/0038-1098(70)90588-0Google Scholar
13. Vidrine, D.W., Analytical Chem. 52, 92 (1980).10.1021/ac50051a022Google Scholar
14. Newman, R.C. and Wakefield, J., J. Phys. Chem. Solids 19, 230 (1961).10.1016/0022-3697(61)90032-4Google Scholar