Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T05:27:37.823Z Has data issue: false hasContentIssue false

Heavy Ion Irradiation of Brannerite-type Ceramics

Published online by Cambridge University Press:  21 March 2011

Jie Lian
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
Lumin Wang
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
Gregory R. Lumpkin
Affiliation:
Materials Division, Australian Nuclear Science and Technology Organisation, Menai, NSW 2234, Australia
Rodney C. Ewing
Affiliation:
Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, USA
Get access

Abstract

Brannerite, UTi2O6, occurs in polyphase Ti-based, crystalline ceramics that are under development for plutonium immobilization. In order to investigate radiation effects caused by α- decay events of Pu, several brannerite compositions were synthesized: UTi2O6, ThTi2O6, CeTi2O6 and a more complex material, which is composed of Ca-containing brannerite and pyrochlore. An 1 MeV Kr+ irradiation was performed over a temperature range of 25 K to 1020 K with in-situ TEM. The ion irradiation-induced crystalline-to-amorphous transformation was observed in all brannerite samples. At room temperature, the critical amorphization dose, Dc, resulting from Kr+ ion irradiation increases in the order: Dc (CeTi2O6) < Dc (ThTi2O6) < Dc (Ca- containing brannerite) < Dc (UTi2O6) < Dc (Ca-containing pyrochlore). The critical amorphization dose for stoichoimetric brannerite increases at elevated temperature due to the effect of thermal annealing. The critical amorphization temperatures of the different brannerite compositions are: 970 K, UTi2O6; 990 K, ThTi2O6; 1020 K, CeTi2O6. The effects of structure and chemical composition on radiation resistance of brannerite-type and pyrochlore-type ceramics are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, A. E. et al. , Nature (London), 278, 219 (1979).Google Scholar
2. Jostsons, A., Vance, L. and Ebbinghaus, B., Proceedings of the International Conference on Future Nuclear Systems, Global's 99 “Nuclear Technology-Bridging the Millennia”, Aug. 29-Sept. 3, 1999, Wyoming.Google Scholar
3. Vance, E. R., Zhang, Y. J., Watson, J. N., Hart, K. P., Day, R. A., Begg, B. D. and Lumpkin, G. R., Abstr. Pap. Amer. Chem. Soc., 219: U87 Part 2, (2000).Google Scholar
4. Lumpkin, G. R., Smith, K. L. and Blackford, M. G., submitted to J. Nucl. Mater., (2000).Google Scholar
5. Szymanski, J. T., Scott, J.D., Canadian Mineralogist, 20, 272 (1982).Google Scholar
6. Lumpkin, G. R., Leung, S. H. F., and Colella, M., Mater. Res. Soc. Symp. Proc., (1999).Google Scholar
7. Lumpkin, G. R., Smith, K. L., and Blackford, M. G., Mater. Res. Soc. Symp. Proc., (1999).Google Scholar
8. Vance, E. R., presented at the American Ceramic Society Annual Meeting, Indianapolis, IN, 1999.Google Scholar
9. Ruh, R., Wadsley, A. D., Acta Cryst., 21, 974 (1966).Google Scholar
10. Weber, W. J., Nucl. Instr. Meth., B166, 98 (2000).Google Scholar
11. Wang, S. X., Wang, L. M. and Ewing, R. C., Phys. Rev. B, (2000), in press.Google Scholar
12. Wang, S. X., Wang, L. M. and Ewing, R. C., Mater. Res. Soc. Symp. Proc., 504, 165 (1998).Google Scholar
13. Weber, W. J., Ewing, R. C. and Wang, L. M., J. Mater. Res., 9, 688 (1994).Google Scholar
14. Weber, W. J., Wang, L. M., Nucl. Instr. Meth., B106, 298 (1995).Google Scholar
15. Wang, S. X., Lumpkin, G. R., Wang, L. M. and Ewing, R. C., Nucl. Instr. Meth., B166, 293 (2000).Google Scholar
16. Gupta, P. K., J. Amer. Ceram. Soc., 76, 1088 (1993).Google Scholar
17. Cooper, A. R., Phys. Chem. Glasses, 19, 60 (1978).Google Scholar
18. Hobbs, L. W., Sreeram, A. N., Jesurum, C. E. and Berger, B. A., Nucl. Instr. Meth., B116, 18 (1996).Google Scholar
19. Weber, W. J., Ewing, R. C., Catlow, C. R. A., Rubia, T. Diaz de la, Hobbs, L. W., Kinoshita, C., Matzke, Hj., Motta, A. T., Nastasi, M., Salje, E. K. H., Vance, E. R. and Zinkle, S. J., J. Mater. Res., 13, 1435 (1998).Google Scholar
20. Weber, W. J., Wald, J. W., and Matzke, Hj., J. Nucl. Mater., 138, 196 (1986).Google Scholar
21. Weber, W. J., Wald, J. W. and Matzke, Hj., Mater. Lett., 3, 173 (1985).Google Scholar
22. Weber, W. J., Ewing, R. C., Science, 289, 2051 (2000).Google Scholar
23. Wang, L. M., Ewing, R. C., MRS Bulletin, 17, 38 (1992).Google Scholar
24. Weber, W. J., Ewing, R. C. and Wang, L. M., J. Mater. Res., 9, 688 (1994).Google Scholar