Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-03T02:20:41.619Z Has data issue: false hasContentIssue false

Growth of Antimony Thin Films Using Perbenzylated Organometallic Precursors

Published online by Cambridge University Press:  16 February 2011

Michael P. Remington Jr.
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Smuruthi Kamepalli
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Philip Boudjouk
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Bryan R. Jarabek
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Dean G. Grier
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Ryan S. Winburn
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Brian E. Very
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Gregory J. McCarthy
Affiliation:
Center for Main Group Chemistry, Department of Chemistry, North Dakota State University, Fargo, North Dakota 58105
Get access

Abstract

The low temperature (ca. 300°C) deposition of antimony films by low-pressure chemical vapor deposition (LPCVD) on glass substrates from tribenzylantimony, Bn3Sb, is described. The facile elimination of the benzyl ligands results in preferentially oriented antimony films with low carbon content. The pyrolysis, decomposition mechanism and precursor design strategies are discussed. In addition, the deposition of bismuth from tribenzylbismuth, Bn3Bi, is presented. The potential for alloy growth using these precursors is discussed. Resulting films were characterized by XRD, SEM, and AFM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dickson, R. S.; Heazle, K. D.; Pain, G. N.; Deacon, G. B.; West, B. O.; Fallon, G. D.; Rowe, R. S.; Leech, P. W.; Faith, M. J. Organomet. Chem. 493, 189 (1995).Google Scholar
2 (a) Ritter, J. J. Inorg. Chem. 33, 6419 (1994).Google Scholar
(b) Ritter, J. J.; Maruthamuthu, P. Inorg. Chem. 34, 4278 (1995); 36, 260 (1997)Google Scholar
(c) Kim, I.-H.; Lee, D.-H. J. Mater. Res. 12, 423 (1997)Google Scholar
3 Humphreys, T. P.; Chiang, P. K.; Bedair, S. M.; Parikh, N. R. Appl. Phys. Lett. 53 (2), 142 (1988).Google Scholar
(b) Ma, K. Y.; Fang, Z. M.; Jaw, D. H.; Cohen, R. M.; Stringfellow, G. B.; Kosar, W. P.; Brown, D. W. Appl. Phys. Lett. 55 (23), 2420 (1989).Google Scholar
(c) Shin, J.; Chiu, K.; Stringfellow, G. B.; Jr.Gedridge, R. W. J. Crystal Growth 132, 371 (1993).Google Scholar
(d) Jr.Gedridge, R. W.; Lee, K. E.; Lowe-Ma, C. Chem. Mater. 5, 979 (1993).Google Scholar
4 Fowler, A. M. Laser Focus World 28, 123 (1992).Google Scholar
5 (a) Maeda, H.; Tanaka, Y.; Fukutomi, M.; Asano, T. Jpn. J. Appl. Phys. 27, L209 (1988)Google Scholar
(b) Dhere, N. G. Vaccum 40, 263 (1990)Google Scholar
(c) Shei, C. Y.; Liu, R. S.; Chang, C. T.; Wu, P. T. Inorg. Chem. 29, 3117 (1990)Google Scholar
(d) Kasuga, T.; Nakamura, K.; Hattori, T.; Abe, Y. J. Mater. Res. 12, 332 (1997).Google Scholar
6 (a) Freeman, L. D.; Doak, G. O. J. Organomet. Chem. 496, 137 (1995)Google Scholar
(b) Stringfellow, G. B. J. Cryst. Growth 128, 503 (1993)Google Scholar
(c) Yablonovitch, E.; Stringfellow, G. B.; Greene, J. E. J. Electron. Mater. 22, 49 (1993).Google Scholar
7 Hendershot, D. G.; Berry, A. D. J. Organomet. Chem. 449, 119 (1993).Google Scholar
8 (a) Brooks, K. C.; Turnipseed, S. B.; Barkley, R. M.; Sievers, R. E.; Tulchinsky, V.; Kaloyeros, A. E. Chem. Mater. 4, 912 (1992).Google Scholar
(b) Zhang, J.; Zhao, J.; Marcy, H. O.; Tonge, L. M.; Wessels, B. W.; Marks, T. J.; Kannewurf, C. R. Appl. Phys. Lett. 54, 1166 (1989).Google Scholar
(c) Yamane, H.; Kurosawa, H.; Hirai, T.; Iwasaki, H.; Kobayashi., N.; Muto, Y. Jpn. J. Appl. Phys. 27, L1495 (1988).Google Scholar
(d) Yamane, H.; Kurosawa, H.; Hirai, T. Chem. Lett. 1988, 1515.Google Scholar
9 Larsen, C. A.; Jr.Gedridge, R. W.; Stringfellow, G. B. Chem. Mater. 3, 96 (1991).Google Scholar
10 (a) Chen, C. H.; Fang, Z. M.; Stringfellow, G. B.; Jr.Gedridge, R. W. Appl. Phys. Lett. 58, 2532 (1991).Google Scholar
(b) Stauf, G. T.; Gaskill, D. K.; Bottka, N.; Jr.Gedridge, R. W. Appl. Phys. Lett. 58, 1311 (1991).Google Scholar
(c) Biefeld, R. M.; Jr.Gedridge, R. W. J. Cryst. Growth 124, 150 (1992).Google Scholar
11 Li, S. H.; Larsen, C. A.; Stringfellow, G. B.; Jr.Gedridge, R. W. J. Electron. Mater. 20, 457 (1991).Google Scholar
12 Cao, D. S.; Chen, C. H.; Hill, C. W.; Li, S. H.; Stringfellow, G. B.; Gordon, D. C.; Brown, D. W.; Vaarstra, B. A. J. Electron. Mater. 21, 583 (1992).Google Scholar
13 Matchett, M. A.; Chiang, M. Y.; Buhro, W. E. Inorg. Chem. 29, 360 (1990).Google Scholar
14 (a) Boudjouk, P.; Bahr, S. R.; McCarthy, G. J. Chem. Mater. 4, 383 (1992).Google Scholar
(b) Boudjouk, P.; Seidler, D. J.; Bahr, S. R.; McCarthy, G. J. J. Chem. Mater. 6, 2108 (1994).Google Scholar
(c) Pan, Y.; Boudjouk, P. Main Gr. Chem. 1, 61 (1995).Google Scholar
15 Boudjouk, P.; Seidler, D. J.; Grier, D.; McCarthy, G. J. Chem. Mater. 8, 1189 (1996).Google Scholar
16 (a) Schmitz, G. A., MS thesis, North Dakota State University, 1997.Google Scholar
(b) Boudjouk, P.; Schmitz, G. A.; Jarabek, B. R.; Triebold, W.; Johnson, M.; Seidler, D. J.; Grier, D. G.; McCarthy, G. J. Chem. Mater. (in press).Google Scholar
17 Boudjouk, P.; Seidler, D. J.; Grier, D. G.; Schmitz, G. A. (unpublished results).Google Scholar
18 Rietveld, H.M., J. Appl. Cryst., 2, 65 (1969)Google Scholar
19 Breunig, H. J.; Ebert, K. H.; Kaller, R.; Mourad, Y.; Atmani, A.; Mugnier, Y. J. Organomet. Chem. 483, 167 (1994).Google Scholar
20 Bähr, G.; Zoche, G. Chem. Ber. 90, 1176 (1957).Google Scholar
21 Dollase, W.A., J. Appl. Cryst. 19, 267 (1986)Google Scholar
22 For examples see: (a) Missana, T.; Catalina, F.; Afonso, C.N.; Ollacarizqueta, M.A. Thin Solid Films 274, 76 (1996).Google Scholar
(b) Kumar, A.; Katyal, O.P. J. Mater. Sci. 24, 4037 (1989).Google Scholar