Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T13:40:13.626Z Has data issue: false hasContentIssue false

Growth Front Roughening of Room Temperature Deposited Oligomer Thin Films

Published online by Cambridge University Press:  17 March 2011

D. Tsamouras
Affiliation:
Department of Polymer Chemistry, Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
G. Palasantzas
Affiliation:
Department of Applied Physics, Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
J. Th. M. De Hosson
Affiliation:
Department of Applied Physics, Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
G. Hadziioannou
Affiliation:
Department of Polymer Chemistry, Materials Science Center, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

Growth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ∝ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meakin, P., Fractals, Scaling, and Growth Far from Equilibrium (Cambridge University Press, Cambridge, 1998) see also here p.408; J. Krim and G. Palasantzas, Int. J. of Mod. Phys. B 9, 599 (1995); A.-L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).Google Scholar
2. Polymers for Electronic and Photonic Applications, edited by Wong, C.P. (Academic Press, Boston, 1993); Lu, T.-M. and Moore, J. A., Mat. Res. Soc. Bull. 20, 28 (1997).Google Scholar
3. Collins, G. W., Letts, S. A., Fearon, E. M., McEachern, R. L., and Bernat, T. P., Phys. Rev. Lett. 73, 708 (1994).Google Scholar
4. Biscarini, F., Samorí, P., Greco, O., and Zamboni, R., Phys. Rev. Lett. 78, 2389 (1997); F. Biscarini, R. Zamboni, P. Samori, P. Ostoja, C. Taliani, Phys. Rev. B 52, 14868 (1995).Google Scholar
5. Zhao, Y.-P., Fortin, J. B., Bonvallet, G., Wang, G.-C. and Lu, T.-M., Phys. Rev. Lett. 85, 3229 (2000).Google Scholar
6. Hutten, P. F. van, Krasnikov, V. V., and Hadziioannou, G., Acc. Chem. Res. 32, 257 (1999).Google Scholar
7. Sirringhaus, H., Brown, P. J., Friend, R. H., Nielsen, M. M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A. J., Janssen, R. A. J., Herwig, P., Leeuw, D. M. de, Nature 401, 685 (1999).Google Scholar
8. Semiconducting Polymers: Chemistry, Physics and Engineering, edited by Hadziioannou, G. and Hutten, P.F. van (Wiley-VCH, Weinheim, 2000).Google Scholar
9. Brouwer, H. J., Krasnikov, V. V., Pham, T. A., Gill, R. E., Hutten, P. F. van, and Hadziioannou, G., Chemical Phys. 65, 227 (1998).Google Scholar
10. Tsamouras, D., Geens, W., Hutten, P. F. van, Poortmans, J., and Hadziioannou, G., Polym. Mater. Sci. Eng. 83, 293 (2000). For the technique of thermal gravimetric analysis (TGA) see A. Blaezek, Thermal Analysis (Van Nostrand Reinhold, London, 1972); B. Dickens, J.H. Flynn in Polymer Characterization: Spectroscopic, Chromatographic, and Physical Instrumental Methods edited by C.D. Craver (American Chemical Society, Washington D.C., 1983).Google Scholar
11. Gill, R. E., Meetsma, A., and Hadziioannou, G., Adv. Mater. 8, 212 (1996).Google Scholar
12.See for example Sarid, D., Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces, Revised Edition (Oxford University Press, New York, 1994).Google Scholar
13. Palasantzas, G., Phys. Rev. E 56, 1254 (1997).Google Scholar
14. Palasantzas, G. and Krim, J., Phys. Rev. Lett. 73, 3564 (1994).Google Scholar
15. Wolf, W. E. and Villain, J., Europhys. Lett. 13, 389 (1990).Google Scholar
16. Lai, Z. -W. and Sarma, S. Das, Phys. Rev. Lett. 66, 2348 (1991).Google Scholar
17. Kardar, M., Parisi, G., and Zhang, Y. C., Phys. Rev. Lett. 56, 889 (1986). For skewed distribution aspects in Directed Polymer Problems in Random Media (DPRM) related to KPZ growth see also T. Halpin-Heally, Phys. Rep. 254, 215 (1995).Google Scholar
18. Forest, M. and Tang, L. -H., Phys. Rev. Lett. 64, 1405 (1991).Google Scholar
19. Aue, J. and Hosson, J. Th. M. De, Appl. Phys. Lett. 71, 1347 (1997).Google Scholar
20. Biscarini, F., Samori, P., Lauria, A., Ostoja, P., Zamboni, R., Taliani, C., Viville, P., Lazzaroni, R., and Bredas, J. L., Thin Sol. Films 284–285, 439 (1996).Google Scholar
21. Palsantzas, G., Zhao, Z. P., Wang, G. -C., Lu, T. -M., Barnas, J., and Hosson, J. Th. M. De, Phys. Rev. B 61, 11109 (2000).Google Scholar