Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T06:11:51.942Z Has data issue: false hasContentIssue false

Growth and processing of heteroepitaxial 3C-SiC films for electronic devices applications

Published online by Cambridge University Press:  25 May 2012

A. Severino
Affiliation:
Epitaxial Technology Center, ETC srl, 16° strada, Blocco Torre Allegra, 95121, Catania, Italy CNR-IMM, sezione di Catania, VIII Strada 5, 95121, Catania, Italy
M. Mauceri
Affiliation:
Epitaxial Technology Center, ETC srl, 16° strada, Blocco Torre Allegra, 95121, Catania, Italy
R. Anzalone
Affiliation:
CNR-IMM, sezione di Catania, VIII Strada 5, 95121, Catania, Italy
A. Canino
Affiliation:
Epitaxial Technology Center, ETC srl, 16° strada, Blocco Torre Allegra, 95121, Catania, Italy CNR-IMM, sezione di Catania, VIII Strada 5, 95121, Catania, Italy
N. Piluso
Affiliation:
Epitaxial Technology Center, ETC srl, 16° strada, Blocco Torre Allegra, 95121, Catania, Italy CNR-IMM, sezione di Catania, VIII Strada 5, 95121, Catania, Italy
C. Vecchio
Affiliation:
Epitaxial Technology Center, ETC srl, 16° strada, Blocco Torre Allegra, 95121, Catania, Italy
M. Camarda
Affiliation:
Epitaxial Technology Center, ETC srl, 16° strada, Blocco Torre Allegra, 95121, Catania, Italy CNR-IMM, sezione di Catania, VIII Strada 5, 95121, Catania, Italy
F.La Via
Affiliation:
CNR-IMM, sezione di Catania, VIII Strada 5, 95121, Catania, Italy
Get access

Abstract

3C-SiC is very attractive due the chance to be grown on large-area, low-cost Si substrates. Moreover, 3C-SiC has higher channel electron mobility with respect to 4H-SiC, interesting property in MOSFET applications. Other application fields where 3C-SiC can play a significant role are solar cells and MEMS-based sensors. In this work, we present a general overview of 3C-SiC growth on Si substrate. The influence of growth parameters, such as the growth rate, on the crystal quality of 3C-SiC films is discussed. The main issue for 3C-SiC development is the reduction of the stacking fault density, which shows an exponential decreasing trend with the film thickness tending to a saturation value of about 1000 cm-1. Some aspect of processing will be also faced with the realization of cantilever for Young modulus calculations and the implantation of Al ions for the study of damaging and recovery of the 3C-SiC crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matsunami, H, Diamond and Related Materials, 2, 1043 (1993).Google Scholar
2. Wesch, W, Nuclear Instruments and Methods in Physics Research B, 116, 305 (1996).Google Scholar
3. Bhatnagar, M, Baliga, BJ, IEEE Transaction on Electron Devices, 40 (3), 645 (1993).Google Scholar
4. Harris, GL, Properties of Silicon Carbide, London: INSPEC, the Institution of Electrical Engineers, 1995.Google Scholar
5. Chaussende, D, Mercier, F, Boulle, A, Conchon, F, Soueidan, M, Ferro, G, Mantzari, A, Andreadou, A, Polychroniadis, EK, Balloud, C, Juillaguet, S, Camassel, J, Pons, M, Journal of Crystal Growth, 310 (5), 976 (2008).Google Scholar
6. Soueidan, M, Ferro, G, Advanced Functional Materials, 16, 975 (2006).Google Scholar
7. Piluso, N, Severino, A, Camarda, M, Canino, A, La Magna, A, La Via, F, Applied Physics Letters, 97 (14), 142103 (2010).Google Scholar
8. Kondo, Y, Takahashi, T, Ishii, K, Hayashi, Y, Sakuma, E, Misawa, S, dai mon, H, Yamanaka, M, Yoshida, S, IEEE Electron Device Letters, 7 (7), 404 (1986).Google Scholar
9. Afanasev, VV, Bassler, M, Pensl, G, Schulz, M, Physica Status Solidi (a), 162, 321 (1997) and references therein.Google Scholar
10. Schoner, A, Krieger, M, Pensl, G, Abe, M, Nagasawa, H, Chemical Vapor Deposition, 12, 523 (2006).Google Scholar
11. Placidi, M, Godignon, P, Mestres, N, Abadal, G, Ferro, G, Leycuras, A, Chassagne, T, Sensors and Actuators B-Chemical, 133 (1), 276 (2008).Google Scholar
12. Mehregany, M, Zorman, CA, Roy, S, Fleischman, AJ, Wu, CH, Rajan, N, International Materials Reviews, 45 (3), 85 (2000).Google Scholar
13. Nagasawa, H, Yagi, K, Kawahara, T, Hatta, N, Abe, M, Microelectronic Engineering, 83, 185 (2006).Google Scholar
14. Miyajima, S, Irikawa, J, Yamada, A, Konagai, M, Appl. Phys. Lett, 97 (2), 023504 (2010).Google Scholar
15. Long, C, Ustin, SA, Ho, W, Journal of Applied Physics, 86 (5), 2509 (1999).Google Scholar
16. Severino, A, Bongiorno, C, Piluso, N, Italia, M, Camarda, M, Mauceri, M, Condorelli, G, Di Stefano, MA, Cafra, B, La Magna, A, La Via, F, Thin Solid Films, 518, S165 (2010).Google Scholar
17. Spitzer, HG, Kleinman, DA, Frosch, JC, Physical Review, 113, 133 (1959).Google Scholar
18. Tairov, YM, Tsvetkov, VF, Journal of Crystal Growth, 43, 209 (1978).Google Scholar
19. Nishino, S, Powell, J, Will, HA, Applied Physics Letters, 42, 460 (1983).Google Scholar
21. Pirouz, P, Ernst, F, Cheng, TT, Material Research Society Symposium Proceedings, 116, 57 (1988).Google Scholar
22. Severino, A, D’Arrigo, G, Bongiorno, C, Scalese, S, Foti, G, La Via, F, Journal of Applied Physics, 102, 023518 (2007) and references therein.Google Scholar
23. Papaioannou, V, Komninou, Ph, Dimitrakopulos, GP, Zekentes, K, Pecz, B, Karakostas, Th, Stoemenos, J, Diamond and Related Materials, 6 (10), 1362 (1997).Google Scholar
24. Polychroniadis, E, Syvajarvi, M, Yakimova, R, Stoemenos, J, Journal of Crystal Growth, 263, 68 (2004).Google Scholar
25. Ishida, Y, Takahashi, T, Okumura, H, Arai, K, Yoshida, S, Chemical Vapor Deposition, 12, 495 (2006).Google Scholar
26. Nagasawa, H, Yagi, K, Kawahara, T, Hatta, N, Chemical Vapor Deposition, 12, 502 (2006).Google Scholar
27. Li, JP, Steckl, AJ, Golecki, I, Reidinger, F, Wang, L, Ning, XJ, Pirouz, P, Applied Physics Letters, 62 (24), 3135 (1993).Google Scholar
28. Mendez, D, Aouni, A, Morales, FM, Pacheco, FJ, Araujo, D, Bustarret, E, Ferro, G, Monteil, Y, Physica Status Solidi (a), 202 (4), 561 (2005).Google Scholar
29. Lebedev, AA, Abramov, PL, Lebedev, SP, Oganesyan, GA, Tregubova, AS, Shamshur, DV, Physica B, 404, 4758 (2009).Google Scholar
30. Song, X, Michaud, JF, Cayrel, F, Zielinski, M, Portail, M, Chassagne, T, Collard, E, Alquier, D, Applied Physics Letters, 96 (14), 142104 (2010).Google Scholar
31. Nagasawa, H, Kawahara, T, Yagi, K, Hatta, N, Uchida, H, Kobayashi, M, Reshanov, S, Esteve, R, Schoner, A, Materials Science Forum, 711, 91 (2011) and reference therein.Google Scholar
32. Severino, A, Locke, C, La Via, F, Saddow, SE, ECS Transactions, 41, 273 (2011).. Data from author’s group obtained at CNR-IMM using the High-Resolution X-Ray Diffractometer D8 Discover built by Bruker AXS.Google Scholar
33. Capano, MA, Kim, BC, Smith, AR, Kvam, P, Tsoi, S, Ramdas, K, Journal of Applied Physics, 100, 083516 (2006).Google Scholar
34. Moller, H, Eickhoff, M, Rapp, M, Grueninger, HW, Krotz, G, Applied Physics A, 68, 461 (1999).Google Scholar
35. Anzalone, R, Locke, C, Carballo, J, Piluso, N, Severino, A, D’Arrigo, G, Volinski, AA, La Via, F, Saddow, SE, Materials Science Forum, 645-648, 143 (2010).Google Scholar
36. Severino, A, La Via, F, Applied Physics Letters, 97, 181916 (2010).Google Scholar
37. Wagner, G, Schwarzkopf, J, Schmidbauer, M, Fornari, R, Materials Science Forum, 600-603, 223 (2009).Google Scholar
38. Zielinski, M, Ndiaye, S, Chassagne, T, Juillaguet, S, Lewandowska, R, Portail, M, Leycuras, A, Camassel, J, Physica Status Solidi (a), 204 (4), 981 (2007).Google Scholar
39. Chassagne, T, Ferro, G, Haas, H, Mank, H, Leycuras, A, Monteil, Y, Soares, F, Balloud, C, Arcade, Ph, Peyre, H, Juillaguet, S, Camassel, J, Physica Status Solidi (a), 202 (4), 524 (2005).Google Scholar
40. Gao, Y, Edgar, JH, Chaudhuri, J, Cheema, SN, Sidorov, MV, Braski, DN, Journal of Crystal Growth, 191, 439 (1998).Google Scholar
41. Ferro, G, Camassel, J, Juillaguet, S, Balloud, C, Polychroniadis, EK, Stoemenos, Y, Dazord, J, Peyre, H, Monteil, Y, Rushworth, SA, Smith, LM, Semiconductor Science Technology, 18, 1015 (2003).Google Scholar
42. Shibahara, K, Nishino, S, Matsunami, M, Applied Physics Letters, 50 (26), 1888 (1987).Google Scholar
43. Powell, JA, Matus, LG, Kuczmarski, MA, Chorey, CM, Cheng, TT, Pirouz, P, Applied Physics Letters, 51 (11), 823 (1987).Google Scholar
44. Nagasawa, H, Yagi, K, Kawahara, T, Hatta, N, Chemical Vapor Deposition, 12, 502 (2006).Google Scholar
45. D’Arrigo, G, Severino, A, Milazzo, G, Bongiorno, C, Piluso, N, Abbondanza, G, Mauceri, M, Condorelli, G, La Via, F, Materials Science Forum, 645-648, 135 (2011).Google Scholar
46. Severino, A, Camarda, M, Condorelli, G, Perdicaro, LMS, Anzalone, R, Mauceri, M, La Magna, A, La Via, F, Applied Physics Letters, 94, 101907 (2009).Google Scholar
47. Yun, J, Takahashi, T, Kuroda, S, Ispida, Y, Okumura, H, Journal of Crystal Growth, 308, 50 (2007).Google Scholar
48. Boulle, A, Chaussende, D, Latu-Romain, L, Conchon, F, Masson, O, Guinebretiere, R, Applied Physics Letters, 89, 091902 (2006).Google Scholar
49. Roy, S, Portail, M, Chassagne, T, Chauveau, JM, Vennegues, P, Zielinski, M, Applied Physics Letters, 95 (8), 081903 (2009).Google Scholar
50. Nagasawa, H, Kawahara, T, Yagi, K, Hatta, N, Materials Science Forum, 679-680, 282 (2011)Google Scholar
51. Yang, YT, Ekinci, KL, Huang, XMH, Schiavone, LM, Roukesa, ML, Zorman, CA, Mehregany, M, Appl. Phys. Lett., 78, 2 (2001).Google Scholar
52. Anzalone, R, Camarda, M, Canino, A, Piluso, N, La Via, F, D’Arrigo, G, Electrochem. Solid St. Lett., 14 (4), H161 (2011).Google Scholar
53. Severino, A, Piluso, N, Marino, A, La Via, F, Phys. Status Solidi RRL, DOI: 10.1002 / pssr.201206064 (2012).Google Scholar
54. Itoh, H, Ohshima, T, Aoki, Y, Abe, K, Yoshikawa, M, Nashiyama, I, Okumura, H, Yoshida, S, Uedono, A, Tanigawa, S, Journ. Appl. Phys., 82 (11), 5339 (1997).Google Scholar