Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-19T02:16:38.720Z Has data issue: false hasContentIssue false

Growth and Characterization of AlGaN/GaN Heterostructures with Multiple Quantum Wells by PAMBE

Published online by Cambridge University Press:  15 February 2011

K. H. Shim
Affiliation:
Departments of Materials Science and Engineering
J. M. Myoung
Affiliation:
Departments of Materials Science and Engineering
O. V. Gluschenkov
Affiliation:
Electrical and Computer Engineering
C. Kim
Affiliation:
Physics, kevinkim@uxl.cso.uiuc.edu, University of Illinois at Urbana-Champaign, Urbana, IL 61801
K. Kim
Affiliation:
Electrical and Computer Engineering
M. C. Yoo
Affiliation:
On leave from Samsung Advanced Institute of Technology
S. Kim
Affiliation:
Electrical and Computer Engineering
D. A. Turnbull
Affiliation:
Electrical and Computer Engineering
S. G. Bishop
Affiliation:
Electrical and Computer Engineering
Get access

Abstract

AlGaN/GaN heterostructures with multiple quantum wells were grown by plasmaassisted molecular beam epitaxy (PAMBE). Structural and optical properties of the heterostructures were analyzed using x-ray diffraction, cathodoldminescence, and photoluminescence. Interband transitions were clearly observed in the GaN quantum wells at both room- and liquid-helium temperatures. The efficiency of the interband recombination due to the confinement effect was greatly enhanced in the thinner quantum wells. The functional dependence of the interband peaks on the well thickness is shown to be in good agreement with the calculated positions of the quantized levels in the wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Amano, H., Hiramatsu, K. and Akasaki, I., Jpn. J. Appl. Phys. 27, L1384 (1988).Google Scholar
3. Krishnankutty, S., Kolbas, R. M., Khan, M. A., Kuznia, J. N., Hove, J. M. Van, and Olson, D. T., J. Electronic Mater. 21, 609 (1992).Google Scholar
4. Salvador, A., Liu, G., Kim, W., Aktas, O., Botchkarev, A., and Morkoc, H., Appl. Phys. Lett. 67, 3322 (1995).Google Scholar
5. Kim, K., Yoo, M. C., Shim, K. H., and Verdeyen, J. T., J. Vac. Sci. Technol. B13, 796 (1995).Google Scholar
6. Myoung, J. M., Kim, C., Shim, K. H., Glusschenkov, O., Kim, K., and Yoo, M. C., Mater. Res. Soc. Symp. Proc. April 1996 (this volume).Google Scholar
7. Kim, C., Robinson, I. K., Myoung, J. M., Shim, K. H., Kim, K., and Yoo, M. C., Mater. Res. Soc. Symp. Proc. April 1996 (this volume).Google Scholar
8. Matthew, J. W. and Blankeslee, A. E., J. Crystal Growth, 27, 118 (1974).Google Scholar
9. Chuang, S. L. and Chang, C. S., Appl. Phys. Lett. 68, 1657 (1996).Google Scholar
10. Shan, W., Schmidt, T. J., Haustein, R. J., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66,3492 (1995).Google Scholar
11. Koide, Y., Itoh, H., Khan, M. R., Hiramtu, K., Sawaki, N., and Akasaki, I., J. Appl. Phys. 61, 4540 (1987).Google Scholar
12. Fischer, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298(1995).Google Scholar