Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T10:40:15.484Z Has data issue: false hasContentIssue false

Grain Size Control by Means of Solid Phase Crystallization of Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Jordi Farjas
Affiliation:
jordi.farjas@udg.es, University of Girona, Department of Physics, Campus Montilivi, Edif. PII,, Girona, E-17071, Spain, 0034972219149, 0034972418098
Pere Roura
Affiliation:
pere.roura@udg.es, University of Girona, GRMT, Physics department, Campus Montilivi, Girona, E-17071, Spain
Pere Roca i Cabarrocas
Affiliation:
roca@poly.polytechnique.fr, Ecole Polytechnique, LPICM (UMR 7647 CNRS), Palaiseau Cedex, F-91128, France
Get access

Abstract

The grain size of thermally crystallized a-Si films is controlled by the nucleation, rN, and growth, rG, rates according to the standard Avrami's theory. Despite this evidence, most papers devoted to improve the crystallized grain size analyze their results with a qualitative reference to this theory. In this paper, we will show that one can identify the standard set of rN and rG values for a-Si and that experiments show that deviations from this standard values always result in a smaller grain size. It is also shown that one cannot expect any substantial improvement with non-conventional heat treatments. Finally, it is argued that a larger grain size is expected from a-Si films containing, in their as-grown state, a controlled density of embedded nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Spinella, C., Lombardo, S. and Priolo, F., J. Appl. Phys. 84, 5383 (1998).Google Scholar
2 Hegedus, S., Prog. Photovol. Res. & Appl. 14, 393 (2006).Google Scholar
3 Green, M.A., Solar Energy 74, 181 (2003)Google Scholar
4 Nelson, J., The physics of solar cells, (Imperial College Press, London, 2003).Google Scholar
5 Iverson, R. B. and Reif, R., J. Appl. Phys. 62, 1675 (1987).Google Scholar
6 Masaki, Y., LeComber, P. G. and Fitzgerald, A. G., J. Appl. Phys. 74, 129 (1993).Google Scholar
7 Nakazawa, K. and Tanaka, K., J. Appl. Phys. 68, 1029 (1990).Google Scholar
8 Pangal, K., Sturm, J. C., Wagner, S. and Büyüklimanli, T. H., J. Appl. Phys. 85, 1900 (1999).Google Scholar
9 Young, D. L., Stradins, P., Xu, Y., Gedvilas, L., Reedy, B., Mahan, A. H., Branz, H. M., Wang, Q., and Williamson, D. L., Appl. Phys. Lett. 89, 161910 (2006).Google Scholar
10 Kolmogorov, A. N., Izv. Akad. auk. SSSR Ser.Fiz. 1, 355 (1937).Google Scholar
11 Farjas, J., Roura, P., Acta Mater. 54, 5573 (2006).Google Scholar
12 Farjas, J., Rath, Chandana, Roura, P. and Cabarrocas, P. Rocai, Appl. Surf. Sci. 238, 165 (2004).Google Scholar
13 Farjas, J. and Roura, P., Phys. Rev. B. 75 (scheduled issue: 01 May 2007).Google Scholar
14 Hatalis, M. K. and Greve, D. W., J. Appl. Phys. 63, 2260 (1988).Google Scholar
15 Ryu, M.-K., Hwang, S.-M., Kim, T.-H., Kim, K.-B., Min, S.H., Appl. Phys. Lett. 71, 3063 (1997).Google Scholar
16 Bo, X.-Z., Yao, N. and Sturm, J. C., J. Appl. Phys. 91, 2910 (2002).Google Scholar
17 Kumonia, H. and Yonehara, T., J. Appl. Phys. 75, 2884 (1994).Google Scholar
18 Yamauchi, N. and Reif, R., J.Appl.Phys. 75, 3235 (1994).Google Scholar
19 Kim, H.-Y., Choi, J.-B. and Lee, J.-Y., J. Vac. Sci. Technol. A 17, 3240 (1999).Google Scholar
20 Ouwens, C. D. and Heijligers, H., Appl. Phys. Lett. 26, 569 (1975).Google Scholar
21 Farjas, J. and Roura, P., Acta Mater (submitted).Google Scholar
22 Fan, Ch.-L., Chen, M.-Ch. and Chang, Y., J. Electrochem. Soc. 150, H178 (2003).Google Scholar
23 Chaabane, N., Suendo, V., Vach, H., Rocai-Cabarrocas, P., Appl. Phys. Lett. 88, 203111 (2006).Google Scholar