Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-16T05:32:52.370Z Has data issue: false hasContentIssue false

Gold Nanoclusters Formed by Ion-Implantation into Bi2TeO5

Published online by Cambridge University Press:  17 March 2011

A. Kling
Affiliation:
Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
M.F. da Silva
Affiliation:
Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
J.C. Soares
Affiliation:
Instituto Tecnológico e Nuclear, 2686-953 Sacavém, Portugal Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
P.F.P. Fichtner
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
L. Amaral
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
F.C. Zawislak
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
I. Földvári
Affiliation:
Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, 1525 Budapest 114, Hungary
Á. Péter
Affiliation:
Research Laboratory for Crystal Physics, Hungarian Academy of Sciences, 1525 Budapest 114, Hungary
Get access

Abstract

Single crystalline samples of bismuth tellurite (Bi2TeO5) were implanted with 800 keV Au+ions to a fluence of 1×1016 cm-2 at room temperature. The samples were subjected to heat treatments in two different ambients (air and high vacuum) at temperatures ranging from 400 - 700°C in a conventional furnace. Strong absorption maxima in the range from 600 - 630 nm in the optical absorption spectra and an intense blue-green color in the samples were observed for annealings performed in air at temperatures between 500 and 700°C indicating the formation of gold colloids. The average radii of the Au clusters formed were estimated to be in the range of 3-4 nm. Samples annealed under vacuum showed distinct changes in color for different annealing temperatures. Studies using the RBS/channeling technique indicate that no full recrystallization of the samples was achieved under both annealing regimes although heat treatment under vacuum provides a significantly better lattice recovery than for air ambient.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mercurio, D., Farissi, M. el, Frit, B., Goursat, P., Mat. Chem. Phys. 9, 467 (1983).Google Scholar
2.Földvári, I., Péter, Á., Voszka, R., Kappers, L.A., J. Cryst. Growth 100, 75 (1990).Google Scholar
3.Földvári, I., Liu, H., Powell, R.C., Péter, Á., J. Appl. Phys. 71, 5466 (1992).Google Scholar
4.Földvári, I., Kappers, L.A., R,H, Bartram, Péter, Á., Opt. Mater. 10, 47 (1998).Google Scholar
5.Shang, D.Y., Matsuno, H., Saito, Y., Suganomata, S., J. Appl. Phys. 80, 406 (1996).Google Scholar
6.Takahiro, K., Kunimatsu, A., Nagata, S., Yamaguchi, S., Yamamoto, S., Aoki, Y., Naramoto, H., Nucl. Instr. Meth. B152, 314 (1999).Google Scholar
7.The latest version can be found at: http://www.research.ibm.com/ionbeams/.Google Scholar
8.Kling, A., Soares, J.C. and Silva, M.F. da, Nucl. Instr. Meth. B141, 436 (1998).Google Scholar
9.Doyle, W.T., Phys. Rev. 111, 1067 (1958).Google Scholar
10.Doremus, R.H., J. Appl. Phys. 37, 2775 (1966).Google Scholar
11.Saito, Y., Shang, D.Y., Suganomata, S., Ionics 20, 35 (1994).Google Scholar