Hostname: page-component-6d856f89d9-nr6nt Total loading time: 0 Render date: 2024-07-16T08:53:48.011Z Has data issue: false hasContentIssue false

Giant Anisotropy of Conductivity in Hydrogenated Nanocrystalline Silicon Thin Films

Published online by Cambridge University Press:  09 August 2011

A. B. Pevtsov
Affiliation:
A.F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia, alex@pevtsov.spb.su
N. A. Feoktistov
Affiliation:
A.F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia, alex@pevtsov.spb.su
V. G. Golubev
Affiliation:
A.F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia, alex@pevtsov.spb.su
Get access

Abstract

Thin (<1000 Å) hydrogenated nanocrystalline silicon films are widely used in solar cells, light emitting diodes, and spatial light modulators. In this work the conductivity of doped and undoped amorphous-nanocrystalline silicon thin films is studied as a function of film thickness: a giant anisotropy of conductivity is established. The longitudinal conductivity decreases dramatically (by a factor of 109 − 1010) as the layer thickness is reduced from 1500 Å to 200 Å, while the transverse conductivity remains close to that of a doped a- Si:H. The data obtained are interpreted in terms of the percolation theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amorphous Semiconductor Technologies and Devices, edited by Hamakawa, Y. ( Elsevier Science Publishers, New York, 1985), p.495 Google Scholar
2. Akiyama, K., Takimoto, A., Ogivara, A., Ogava, A., Jpn. Appl.Phys. 33, part 1, 590 (1993).Google Scholar
3. Hu, G. Y., O'Connel, R.F., He, Y. L., Yu, M. B., J.Appl.Phys. 78, 3945 (1995).Google Scholar
4. Liu, X., Tong, S., Wang, L., Rao, X., J. Appl.Phys. 78, 6143 (1995).Google Scholar
5. Pevtsov, A. B. Yu.Davydov, V., Feoktistov, N. A., Karpov, V. G., Phys.Rev. B52, 955 (1995).Google Scholar
6. Golubev, V. G., Yu.Davydov, V., Medvedev, A. V., Pevtsov, A. B., Feoktistov, N. A., Fiz.Tverd. Tela, 39, 1348 (1997) [Phys. Solid State 39, 1197 (1997)].Google Scholar
7. Tsu, R., Gonzales-Hemandes, J., Chao, S. S., Lee, S. C., Tanaka, K., Appl.Phys.Lett. 40, 534 (1982).Google Scholar
8. Shklovskii, B. I., phys.stat.sol.(b) 83, K11 (1977); A.L.Efros and B.I.Shklovskii. Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984), p. 420.Google Scholar
9. Tartakovskii, A. V., Fistul’, M. V., Raikh, M. E., Ruzin, I. M., Fiz. Tekh. Poluprovodmn. 21, 603 (1987) [Soy. Phys. Semicond. 21, 312 (1985)].Google Scholar
10. Cambell, I. H., Fauchet, P. M., Solid State Commun. 58, 739 (1986).Google Scholar