Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-16T02:29:58.064Z Has data issue: false hasContentIssue false

GeSi Infrared Detectors Using Selective Deposition

Published online by Cambridge University Press:  15 February 2011

R. Strong
Affiliation:
Electrical and Computer Engineering Dept., Carnegie Mellon University, Pittsburgh, PA
D. W. Greve
Affiliation:
Electrical and Computer Engineering Dept., Carnegie Mellon University, Pittsburgh, PA
M. M. Weeks
Affiliation:
RL/ERED, Rome Labs, 80 Scott Rd., Hanscom Air Force Base
Get access

Abstract

Heterojunction p++ GeSi / Si internal photoemission (HIP) detectors deposited by ultra high vacuum chemical vapor deposition (UHV/CVD) were investigated as alternatives to silicide Schottky-barrier type detectors for infrared focal plane arrays. HIP structures were grown using SiH4, GeH4, and B2H6 source gases on (100) p- Si substrates patterned with thermal oxide windows. Selective epitaxy was maintained over a range of boron concentrations (6×1019 – 6.5×1020 cm-3) and Ge fractions (0.38–0.50), and a maximum selective thickness of ~300Å was determined for silicon growth at 550°C. These structures were fabricated into IR detectors using techniques compatible with standard Si focal plane array processing technology. Photoresponse data were analyzed according to the modified Fowler equation, indicating cut-off wavelengths of 5–12 (μm) and Cl values of 8–21 (%/eV) depending on sample parameters. I(V) characteristics were also measured at various temperatures, yielding electrical barrier heights consistent with optical measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tsaur, B.-Y., Weeks, M.M., Trubiano, R., Pellegrini, P.W., Yew, T.-R., IEEE Electron Device Letters, 9(12) p.6 50 (Dec. 1988).Google Scholar
2. Tsaur, B.-Y., Weeks, M.M., Pellegrini, P.W., IEEE Electron Device Letters, 9(2) p. 100 (Feb. 1988).Google Scholar
3. Lin, T.L., Park, J.S., Gunapala, S.D., Jones, E.W., Castillo, H.M. Del, Weeks, M. M., Pellegrini, P.W., IEEE Electron Device Letters, 16(3) p. 94 (Mar. 1995).Google Scholar
4. Lin, T.L., Park, J.S., Gunapala, S.D., Jones, E.W., Castillo, H.M. Del, IEEE Electron Device Letters, 15(3) p. 103 (Mar. 1994).Google Scholar
5. Tsaur, B.-Y., Chen, C. K., Marino, S. A., IEEE Electron Device Letters, 12(6) p. 293 (June 1991).Google Scholar
6. Strong, R., Greve, D.W., Schlesinger, T.E., Weeks, M. M., Pellegrini, P. W., MaterialsResearch Society Symposium Proceedings, vol.379, Strained Layer Epitaxy – Materials, Processing, and Devices, p.339 (Spring 1995).Google Scholar
7. Harame, D. L., Comfort, J. H., Cressler, J. D., Crabbe, E. F.', Sun, J. Y.-C., Meyerson, B. S., Tice, T., IEEE Trans. on Electron Devices, 42(3) p. 455 (March 1995).Google Scholar
8. Racanelli, M., Greve, D. W., Applied Physics Letters, 58 p. 2096 (1991).Google Scholar
9. Greve, D. W., Materials Science and Engineering, B 18 p.2 2 (1993).Google Scholar
10. Sze, S. M., Physics of Semiconductors (Wiley & Sons, 1981), p. 250.Google Scholar
11. Weeks, M. M., Pellegrini, P. W., SPIE vol.1108 Test and Evaluation of Infrared Detectors and Arrays (1989) p. 31.Google Scholar
12. Wolfe, C. M., Holonyak, N. Jr., Stillman, G.E., Physical Properties of Semiconductors(Prentice-Hall, Inc. 1989) p. 224.Google Scholar
13. Bean, J. C., Proc. IEEE, 80(4) (1992).Google Scholar
14. Chun, S. K., Wang, K. L., IEEE Trans. on Electron Devices, 39(9) (1992).Google Scholar
15. Roulston, D. J., Bipolar Semiconductor Devices (McGraw-Hill, Inc. 1990) p. 14.Google Scholar
16. Poortmans, J., Jain, S. C., Caymax, M., Van Ammel, A., Nijs, J., Mertens, R. P., Van Overstraeten, R., Microelectronic Engineering, 19 p. 44 3 (1992).Google Scholar