Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-06-20T13:37:07.882Z Has data issue: false hasContentIssue false

A Generalized Model of Beryllium Diffusion in InGaASs Epitaxial Structures Under Point Defect Nonequilibrium Conditions

Published online by Cambridge University Press:  10 February 2011

S. Gautier
Affiliation:
LCIA-1NSA de Rouen, Place Emile Blondel, B.P. 08, F76131 Mont Saint Aignan, France
S. Koumetz
Affiliation:
LCIA-1NSA de Rouen, Place Emile Blondel, B.P. 08, F76131 Mont Saint Aignan, France
J. Marcon
Affiliation:
LCIA-1NSA de Rouen, Place Emile Blondel, B.P. 08, F76131 Mont Saint Aignan, France
K. Ketata
Affiliation:
LCIA-1NSA de Rouen, Place Emile Blondel, B.P. 08, F76131 Mont Saint Aignan, France
M. Ketata
Affiliation:
LCIA-1NSA de Rouen, Place Emile Blondel, B.P. 08, F76131 Mont Saint Aignan, France
B. Gautier
Affiliation:
LPM-INSA de Lyon, France
Get access

Abstract

Beryllium diffusion during post-growth annealing is investigated in InGaAs epitaxial layers. Indeed, this undesirable diffusion may occur during thermal treatments of InGaAs/lnP Heterojunction Bipolar Transistors (HBT's), which can generate a limitation of frequency performances of these devices. Epitaxial structures have then been grown, one set by Chemical Beam Epitaxy (CBE), and another one by Gas Source Molecular Beam Epitaxy (GSMBE). The post-growth Rapid Thermal Annealing (RTA) was then performed, and Secondary Ion Mass Spectrometry (SIMS) has been used to characterize the Be depht profiles.

In parallel with our experimental study, we propose two models of Be diffusion in InGaAs in the case of point defect nonequilibrium. First, a Kick-out Diffusion model considering neutral Be interstitial species and charged point defects has been studied. Then, a Generalized Substitutional-Interstitial Diffusion model based on simultaneous diffusion by Dissociative and Kick-out mechanisms is proposed. Good agreements between experimental depth profiles and simulated curves have been obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weisberg, L.R. and Blanc, J., Phys. Rev. 131, 1548 (1963).Google Scholar
2. Frank, F.C. and Turnbull, D., Phys. Rev. 104, p. 617 (1956).Google Scholar
3. Longini, R.L., Solid State Electron. 5, p. 127 (1962).Google Scholar
4. Tuck, B., Kadhim, M.A.H., J. Mater. Sci. 7, 585 (1972).Google Scholar
5. Gösele, U. and Morehead, F., J. Appl. Phys. 52, p. 4617 (1981).Google Scholar
6. Yu, S., Tan, T.Y. and Gösele, U., J. Appl. Phys. 69, p. 3547 (1991).Google Scholar
7. van Ommen, A.H., J. Appl. Phys. 54, p. 5055 (1983).Google Scholar
8. Scott, E.G., Wake, D., Spider, G.D.T. and Davies, G.J., J. Appl. Phys. 66, p. 5344 (1989).Google Scholar
9. Metzger, R.A., Hafízi, M., Stanchina, W.E., Lin, T., Wilson, R.G. and McGray, L.G., Appl. Phys. Lett. 63, p. 1360 (1993).Google Scholar
10. Koumetz, S., Marcon, J., Ketata, K., and Ketata, M., Appl. Phys. Lett. 67, p 2161, (1995).Google Scholar
11. Benchimol, J.L., Juhel, M., Petitjean, M., Ancilotti, A., J. Vac. Sci. Technol. B13, p. 1 (1995).Google Scholar
12. Pessa, M., Tappura, K., Ovtchmnikov, A., Thin Solid Film 267, p. 99 (1995).Google Scholar
13. Tan, T.Y. and Gösele, U., J. Appl. Phys. 61, p. 1841 (1987).Google Scholar
14. Press, W.H., Teucolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical recipes in C, Cambridge University Press, 1992, pp. 847851.Google Scholar