Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T17:27:57.813Z Has data issue: false hasContentIssue false

Ge Growth on Nanostructured Silicon Surfaces

Published online by Cambridge University Press:  01 February 2011

Ganesh Vanamu
Affiliation:
Department of Chemical and Nuclear Engineering & Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM-87131
Abhaya K. Datye
Affiliation:
Department of Chemical and Nuclear Engineering & Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM-87131
Saleem H. Zaidi
Affiliation:
Gratings, Inc., 2700 B Broadbent Parkway, N.E, Albuquerque, NM 87107
Get access

Abstract

We report highest quality Ge epilayers on nanoscale patterned Si structures. 100% Ge films of 10 μm are deposited using chemical vapor deposition. The quality of Ge layers was examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution x-ray diffraction (HRXRD) measurements. The defect density was evaluated using etch pit density measurements. We have obtained lowest dislocation density (5×105 cm-2) Ge films on the nanopatterned Si structures. The full width half maximum peaks of the reciprocal space maps of Ge epilayers on the nanopatterned Si showed 93 arc sec. We were able to get rid of the crosshatch pattern on the Ge surface grown on the nanopatterned Si. We also showed that there is a significant improvement of the quality of the Ge epilayers in the nanopatterned Si compared to an unpatterned Si. We observed nearly three-order magnitude decrease in the dislocation density in the patterned compared to the unpatterned structures. The Ge epilayer in the patterned Si has a dislocation density of 5×105 cm-2 as compared to 6×108 cm-2 for unpatterned Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Carlin, J. A., Ringel, S. A., Fitzgerald, E. A., Bulsara, M., and Keyes, B. M., Appl. Phys. Lett., 76, 1884 (2000).10.1063/1.126200Google Scholar
2 Masini, G., Colace, L. and Assanto, G., Appl. Phys. Lett., 82, 2524 (2003).10.1063/1.1567046Google Scholar
3 Ringel, S. A., Carlin, J. A., Andre, C. A., Wilt, D. M., Clark, E. B., Jenkins, P., Scheiman, D., Leitz, C. W., Allerman, A. A., and Fitzgerald, E. A., Prog. Photovoltaics 10, 417 (2002).10.1002/pip.448Google Scholar
4 Lutz, M. A., Feenstra, R. M., Legoues, F. K.. Mooney, P. M., and Chu, J. O., Appl. Phys. Lett. 66, 724 (1995).10.1063/1.114112Google Scholar
5 Ackaert, A., Buydens, L., Lootens, D., Daele, P. Van, and Demeester, P., Appl. Phys. Lett. 55, 2187 (1989).10.1063/1.102056Google Scholar
6 Sakai, S., Appl. Phys. Lett. 51, 1069 (1987).10.1063/1.98794Google Scholar
7 Wada, O. and Crow, J. in Integrated Optoelectronics, Edited by Dagenais, M., Leheney, R. F., and Crow, J., Academic Press (1995).Google Scholar
8 Currie, M. T., Samavedam, S. B., Langdo, T. A., Leitz, C. W., and Fitzgerald, E. A., Appl. Phys. Lett. 72, 1718 (1998).10.1063/1.121162Google Scholar
9 Nur, O., Karlsteen, M., Södervall, U., Willander, M., Patel, C. J., Hernandez, C., Campidelli, Y., Bensahel, D. and Kyutt, R. N., Semicond. Sci. Technol., 15, L25 (2000).10.1088/0268-1242/15/7/101Google Scholar
10 Mathews, J. W., Mader, S., and Light, T. B., J. Appl. Phys. 41, 3800 (1970).10.1063/1.1659510Google Scholar
11 Vanamu, G., and Datye, A. K. and Zaidi, S. H., Mat. Res. Soc. Symp. Proc. Vol. 809 (2004).10.1557/PROC-809-B8.9Google Scholar
12 Zaidi, S H. and Brueck, S. R. J., J. Vac. Sci. Technol. B 11, 693 (1994).Google Scholar
13 Zaidi, S. H. and Brueck, S. R. J., J. Vac. Sci. Technol. B 11, 658 (1993).10.1116/1.586816Google Scholar
14 Zaidi, S. H., United States Patent, Patent No. US 6,835,246 B2, Dec 28, 2004.Google Scholar
15 Malta, D.P., Posthill, J.B., Markunas, R.J., Humphreys, T.P., Appl. Phys. Lett. 60, 844 (1992).10.1063/1.106532Google Scholar