Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T11:20:45.390Z Has data issue: false hasContentIssue false

GaAs Surface Passivation by InGaP Thin Film

Published online by Cambridge University Press:  26 February 2011

Fumiaki Hyuga
Affiliation:
NTT LSI Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–01, Japan.
Tatsuo Aoki
Affiliation:
NTT LSI Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–01, Japan.
Suehiro Sugitani
Affiliation:
NTT LSI Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–01, Japan.
Kazuyoshi Asai
Affiliation:
NTT LSI Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–01, Japan.
Yoshihiro Imamura
Affiliation:
NTT Opto-Electronics Laboratories, 3–1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243–01, Japan.
Get access

Abstract

InGaP thin films are evaluated as wide-bandgap materials for GaAs surface passivation. A 200-Å InGaP thin film increases GaAs photoluminescence intensity 25-fold and enables Schottky barrier heights of more than 0.6 eV on n-type GaAs layers with a carrier concentration of 3×1018 /cm3. These effects persist after annealing at 800 °C for 10 min. InGaP thin films are thus suitable as surface passivation films for high-performance GaAs-MESFETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirose, M. and Uchitomi, N., 1990 IEDM Technical Digest, 511 (1990).Google Scholar
2. Capasso, F. and Williams, G. F., J. Electrochem. Soc. 129, 821 (1982).Google Scholar
3. Eizenberg, M., Heiblum, M., Nathan, M. I., Breslau, N., and Mooney, P. M., J. Appl. Phys. 61, 1516 (1987).Google Scholar
4. Olson, J. M., Ahrenkiel, R. K., Dunlavy, D. J., Keyes, B., and Kibbler, A. E., Appl. Phys. Lett. 55, 1208 (1989).Google Scholar
5. Nelson, R. J. and Holonyak, N. Jr, J. Phys. Chem. Solids 37, 629 (1976).Google Scholar
6. Rao, M. A., Caine, E. J., Kroemer, H., Long, S. I., and Babie, D. I., J. Appl. Phys. 61, 643 (1987).Google Scholar
7. Biswas, D., Debbar, N., Bhattaoharya, P., Razeghi, N., Defour, M., and Omnes, F., Appl. Phys. Lett. 56, 833 (1990).Google Scholar
8. Quigley, J. H., Hafich, M. J., Lee, H. Y., Stave, R. E., and Robinson, G. Y., J. Vac. Sci. Technol. B7, 358 (1989).Google Scholar
9. Morroe, R. A., Appl. Phys. Lett. 55, 2523 (1989).Google Scholar
10. Gibbons, J. F., Johnson, W. S., and Mylroie, W., Projected range Statics, 2nd ed. (Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania, 1975).Google Scholar
11. Kroemer, H., Chien, Wu-Yi, Harris, J. S. Jr, Edwall, D. D., Appl. Phys. Lett. 36, 295 (1980).Google Scholar