Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-17T16:28:17.231Z Has data issue: false hasContentIssue false

Fused Heterocyclic Aromatics as Potential Organic Semiconductors: a Theoretical Study

Published online by Cambridge University Press:  01 February 2011

Faleh Al Tal
Affiliation:
falehaltal@yahoo.com, Qatar University, Department of Electrical Engineering, Doha, N/A, Qatar
Phuong-T T. Pham
Affiliation:
ptp2@psu.edu, Pennsylvania State University Worthington Scranton, Department of Chemistry, Dunmore, PA, 18512, United States
Mariam Ali Al-Maadeed
Affiliation:
m.alali@qu.edu.qa, Qatar University, Department of Mathematics and Physics, Doha, N/A, Qatar
Mamoun M. Bader
Affiliation:
mmb11@psu.edu, Pennsylvania State University, Chemistry, 76 Univeristy Drive, Hazleton, PA, 18202, United States
Get access

Abstract

We report herein the results of density functional theory calculations of the geometric and electronic structure for a series of fused heterocyclic compounds. These molecules were compared with the corresponding carbocyclic oligoacenes, which are currently being experimentally investigated for use as organic semiconductors. The impact of various structural modifications on this class of compounds on the calculated structures is examined. The results of our calculations reveal that such materials hold exceptional promise as organic semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.See for example: (a) special issue of Chem. Mat. 2004, Jenekhe, S. Ed. (b) Handbook of Conducting Polymers, Skotheim, Terje A.; Reynolds, John R. Editor(s): 3rd Edition, 2007, CRC Press: Boca Raton, Florida, USA.Google Scholar
2. Handbook of Oligo and Polythiophenes, Fichou, D. (Editor), 1999: Wiley-VCH Verlag GmbH, Weinheim, Germany.Google Scholar
3. Ruiz, Ricardo; Choudhary, Devashish; Nickel, Bert; Toccoli, Tullio; Chang, Kee-Chul; Mayer, Alex C.; Clancy, Paulette; Blakely, Jack M.; Headrick, Randall L.; Iannotta, Salvatore; Malliaras, George G. Chem. Mat., 2004, 16, 4497.Google Scholar
4..(a) Babel, Amit; Jenekhe, Samson A. J. Amer. Chem. Soc., 2003, 125, 13656. (b) Chen, X. Linda; Jenekhe, Samson A. Macromolecules, 1997, 30, 1728. (c) Yu, Luping; Chen, Mai; Dalton, Larry R. Chem. Mat. 1990, 2, 649. (d) Yu, Luping; Dalton, Larry R. Macromolecules, 1990, 23, 3439. (e) Yu, L.; Polis, D. W.; Xiao, F.; Sapochak, L. S.; McLean, M. R.; Dalton, L. R.; Spangler, C. W.; Hall, T. J.; Havelka, K. O. Polymer, 1992, 33, 3239. (f) McLean, M. R., Bader, M., Dalton, L. R., Devine, R. L. S., Steier, W. H. J. Phys. Chem., 1990, 94, 4386.Google Scholar
5.(a) Kim, O., J. Polym. Sci. Polym. Lett. Ed., 1985, 23, 137. (b) M. Okada and C.S. Marvel, J. Polym. Sci. A.I, 1968, 6, 1774. (c) R.L. Mital and S.K. Jain, J. Chem. Soc. (C), 1971, 1875.Google Scholar
6. Becke, A. D. J. Chem. Phys. 1993, 98, 5648; Spartan Wavefunction Inc. 2006, Irvine CA.Google Scholar
7. Pham, P.T.T., Xia, Y., Frisbie, C. D., Bader, M. M. J. Phys. Chem. C, 2008, in press.Google Scholar