Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T17:06:14.638Z Has data issue: false hasContentIssue false

Fullerene-Incorporated Nanocomposite Resist System for Nanolithograpy

Published online by Cambridge University Press:  10 February 2011

T. Ishii
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa, Japan, tishii@will.brl.ntt.co.jp
H. Nozawa
Affiliation:
NTT Photonics Laboratories, Atsugi, Kanagawa, Japan
E. Kuramochi
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa, Japan, tishii@will.brl.ntt.co.jp
T. Tamamura
Affiliation:
NTT Basic Research Laboratories, Atsugi, Kanagawa, Japan, tishii@will.brl.ntt.co.jp
Get access

Abstract

A nanocomposite resist system that incorporates sub-nm fullerene molecules ( C60 and/or C70) into a conventional resist material is proposed for nanolithograpy. Fullerene has physically and chemically resistant characteristics, and its incorporation reinforces the original resist film, leading to substantial improvements in resist performance: etching resistance, pattern contrast, mechanical strength and thermal resistance. We have prepared a system composed of a positive-type electron beam resist, ZEP520, and C60 or a C60/C70 mixture and through the fabrication of high electron mobility transistors (HEMTs), X-ray masks, and groove-grating mirrors for lasers with nanometer dimensions confirmed improved resist performance, particularly resolution improvements due to enhanced etching resistance. By making use of a characteristic unique to the nanocomposite, which is that sensitivity readily changes with the fullerene content due to a dissolution inhibiting effect of fullerene, we have constructed a fullerene-incorporated bilayer resist system for a lift-off process and have successfully fabricated a highly-ordered array of self-organized boxlike nanostructures and a mold for nanoprinting. Further, solubility enhancement by fullerene derivatives has been examined for a higher degree of fullerene incorporation and better sensitivity characteristics in future nanocomposite resist systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, W. and Ahmed, H., Appl. Phys. Lett. 62 (13), 1499 (1993).Google Scholar
2.Ishii, T., Nozawa, H., and Tamamura, T., in Abstracts of Int. Conf. on Micro- and Nano- Engineering (Glasgow, UK 1996), p. 21.Google Scholar
3.Ishii, T., Nozawa, H., and Tamamura, T., Appl. Phys. Lett. 70 (9), 1110 (1997).Google Scholar
4.Broers, A. N., in Proc. of 1st Internat'l Conf. on Electron and Ion Beam Science and Technology, edited by Bakish, R. (Wiley, New York, 1964), p. 191.Google Scholar
5.Broers, A. N., Molzen, W. W., Cuomo, J. J., and Wittels, N. D., Appl. Phys. Lett. 29 (9), 596 (1997).Google Scholar
6.Gokan, H., Esho, S., and Onishi, Y., J. Electrochem. Soc. 130 (1), 143 (1983).Google Scholar
7.Kakuchi, M., Hikita, M., and Tamamura, T., Appl. Phys. Lett. 48 (13), 835 (1986).Google Scholar
8.Tada, T. and Kanayama, T., Jpn. J. Appl. Phys. 35 (1A), L63 (1996).Google Scholar
9.Nishida, T., Notomi, M., Iga, R., and Tamamura, T., Jpn. J. Appl. Phys. 31 (12B), 4508 (1996).Google Scholar
10.Ishii, T., Nozawa, H., Tamamura, T., and Ozawa, A., J. Vac. Sci.Technol. B 15 (6), 2570 (1997).Google Scholar
11.Shibata, T., Ishii, T., Nozawa, H., and Tamamura, T., Jpn. J. Appl. Phys. 36 (12B),7642 (1997).Google Scholar
12.Ishii, T., Tanaka, H., Kuramochi, E., and Tamamura, T., Jpn. J. Appl. Phys. 37(12B),7202 (1998).Google Scholar
13.Nakamura, Y., Takechi, S., Tsurunaga, Y., Fujino, K., and Ban, Y., Polymer Reprints, Jpn. 36(7), 2078 (1987).Google Scholar
14.Ruoff, R. S., Tse, D. S., Malhotra, R., and Lorents, D. C., J. Phys. Chem. 97, 3379 (1993).Google Scholar
15.Scrivens, W. A. and Tour, J. M., J. Chem. Soc., Chem. Commun. 15, 1207 (1993).Google Scholar
16.DeSalvo, G. C., Tseng, W. F., and Comas, J., J. Electrochem. Soc. 139 (3), 143 (1992).Google Scholar
17.Murata, T., Kishimoto, S., Maezawa, K., Mizutani, T., Ishii, T., and Tamamura, T., in Extended Abstracts of Int. Symp. on Compound Semiconductors (Berlin, 1999), p. Mo B 1–.Google Scholar
18.Suemitsu, T., Ishii, T., Yokoyama, H., Umeda, Y., Enoki, T., Ishii, Y., and Tamamur, T. in Proc. of Int. Electron Device Meeting (IEDM98), edited by Woerlee, P. (San Francisco, 1998), pp. 223–.Google Scholar
19.Suemitsu, T., Ishii, T., Yokoyama, H., Enoki, T., Ishii, Y., and Tamamura, T., Jpn. J. Appl. Phys. 38 (2B), L154 (1999).Google Scholar
20.Ozawa, A., Ohoki, S., Oda, M., and Yoshihara, H., IEICE Trans. Electron. ED77-C, 255 (1994).Google Scholar
21.Oku, S., Ishii, T., Iga, R., and Hirono, T., IEEE J. of Selected Topics in Quantum Electron. 5(3), 682 (1999).Google Scholar
22.Kuramochi, E., Temmyo, J., and Tamamura, T., Appl. Phys. Lett. 71 (12), 1655 (1997).Google Scholar
23.Pang, S., Tamamura, T., Nakao, M., Ozawa, A., and Masuda, H., J. Vac. Sci. Technol. B 16 (3),1145 (1997).Google Scholar
24.Robinson, A. P. G., Palmer, R.E., Tada, T., Kanayama, T., and Preece, J. A., Appl. Phys. Lett. 72 (11), 1302 (1998).Google Scholar
25.Shigehara, K., Matsumoto, M., Yagi, T., Watanabe, T., and Miyata, S., in Proc. of 4th Int. Conf. on Organic Nonlinear Optics (ICONO'4, Chitose, Japan 1998), in print.Google Scholar