Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T08:56:22.152Z Has data issue: false hasContentIssue false

Fracture Toughness of Amorphous Metals and Composites

Published online by Cambridge University Press:  11 February 2011

J.J. Lewandowski
Affiliation:
Case Western Reserve University, Department of Materials Science and Engineering, Cleveland, Ohio 44106, U.S.A.
A.K. Thurston
Affiliation:
Case Western Reserve University, Department of Materials Science and Engineering, Cleveland, Ohio 44106, U.S.A.
P. Lowhaphandu
Affiliation:
Case Western Reserve University, Department of Materials Science and Engineering, Cleveland, Ohio 44106, U.S.A.
Get access

Abstract

The effects of changes in notch radius on the toughness of two different Zr-based bulk metallic glasses have been determined. It is shown that increases in notch radius produce large increases to the toughness, accompanied by extensive shear banding and crack bifurcation. The fracture toughness of twenty (20) fatigue precracked specimens exhibiting planar crack growth were in the range 20.3 ± 6.7 MPa√m for the two Zr-based glasses. Increasing the notch radius to 110 μm produced notch toughness in the range 95.3 ± 8.3 MPa√m for nine (9) tests on Vitreloy I, well in excess of that typically observed in most structural materials. Toughness tests conducted on two fatigue precracked specimens of Vitreloy I at 77 K produced values for fracture toughness that were in the range 17.9 ± 2.7 MPa√m, similar to that obtained at 298 K. The fatigue precracked fracture toughness of metallic glass composites containing large crystalline regions of a body centered cubic Zr-Ti-Nb alloy were in the range 29–42 MPa√m, but the values were temperature dependent over the range 148 K to 500 K. Fracture surfaces were analyzed via Scanning Electron Microscopy (SEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Peker, A. and Johnson, W.L., Applied Physics Letters, 1993; 63: 2342.Google Scholar
2. Inoue, A., Zhang, T., and Masumoto, T., Materials Transactions - JIM, 1990; 31: 425.Google Scholar
3. Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L., Scripta Metall., 1994; 30: 429.Google Scholar
4. Bruck, H.A., Rosakis, A.J., and Johnson, W.L., J. Mater. Res., 1996; 11(2): 503.Google Scholar
5. Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., Applied Physics Letters, 1997; 71: 476.Google Scholar
6. Conner, R.D., Rosakis, A.J., Johnson, W.L., and Owen, D.M., Scripta Mater., 1997; 37(9): 1373.Google Scholar
7. Lewandowski, J.J. and Lowhaphandu, P., Inter. Mater. Rev., 1998; 43(4): 145.Google Scholar
8. Lowhaphandu, P. and Lewandowski, J.J., Scripta Mater., 1998; 38(12): 1811 Google Scholar
9. Lowhaphandu, P., Montgomery, S.L., and Lewandowski, J.J., Scripta Mater., 1999; 41(1): 19.Google Scholar
10. Lewandowski, J.J., Materials Transactions - JIM, 2001; 42(4): 633.Google Scholar
11. Lewandowski, J.J. and Lowhaphandu, P., Philosophical Magazine A, 2003; 82(17): 3427.Google Scholar
12. Lowhaphandu, P., Ludrosky, L.A., Montgomery, S.L., and Lewandowski, J.J., Intermetallics, 2000; 8: 487.Google Scholar
13. Ko, B.C., Wesseling, P., Vatamanu, L.O., Shiflet, G.S., and Lewandowski, J.J., Intermetallics, 2003, 10: 1099.Google Scholar
14. Gilbert, C.J., Schroeder, V., and Ritchie, R.O., Met. Trans. A, 1999, 130: 1739.Google Scholar
15. Wesseling, P., Lowhahphandu, P. and Lewandowski, J. J., in Supercooled Liquids, Glass Transition, and Bulk Metallic Glasses, MRS Symposium Proceedings - Volume 754, (Egami, T., Greer, A.L., Inoue, A., and Ranganathan, S., eds.), MRS, Warrendale, PA, 2003, this symposium.Google Scholar
16. Gilbert, C.J., Lippmann, J.M., and Ritchie, R.O., Scripta Mater., 1998; 38(4): 537.Google Scholar
17. Liu, C.T., et al., Metall. Mater. Trans., 1998; 29A: 1811.Google Scholar
18. Yim, H.C., Conner, R.D., Szuecs, F., and Johnson, W.L., Acta Mater., 2003; 50(10): 2737.Google Scholar
19. Davis, L.A. and Kavesh, S., J. Mater. Sci., 1975; 10: 453.Google Scholar
20. Leamy, H.J., Chen, H.S., and Wang, T.T., Met. Trans., 1972; 3: 699.Google Scholar
21. Pampillo, C.A. and Polk, D.E., Acta Metall., 1974; 22: 741.Google Scholar
22. Mendiratta, M., Lewandowski, J.J., and Dimiduk, D.M., Met. Trans. A, 1991, 22A; 1573.Google Scholar
23. Kajuch, J., Short, J.W., and Lewandowski, J.J., Acta Metall., 1995, 26A; 1955.Google Scholar
24. Rigney, J.D. and Lewandowski, J.J., Met. Trans. A, 1996, 27A; 3292.Google Scholar
25. Samant, A. and Lewandowski, J.J., Met. Trans. A, 1997, 28A; 389.Google Scholar
26. Samant, A. and Lewandowski, J.J., Met. Trans. A, 1997, 28A; 2297.Google Scholar
27. Mendiratta, M.G., Goetz, R., Dimiduk, D.M., Lewandowski, J.J., Met. Trans. A, 1995, 26A; 1767 Google Scholar
28. Padhi, D. and Lewandowski, J.J., Met. Trans. A, 2003, 34A(4); 967.Google Scholar