Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-21T11:35:24.420Z Has data issue: false hasContentIssue false

Fracture Mechanics of Interface Failure

Published online by Cambridge University Press:  22 February 2011

Kevin Kendall*
Affiliation:
ICI New Science Group, PO Box 11, The Heath, Runcorn, Cheshire
Get access

Abstract

Interfaces are important in ceramic and other composite materials because they can be used to control cracks, the major source of weakness and unreliability in brittle solids. Brittle materials fracture catastrophically, but may be converted into tough composites by the injection of interfaces which retard or deflect the cracks. This paper examines the behaviour of cracks at interfaces and demonstrates several mechanisms for crack control in brittle systems. Crack stopping, dislocation formation, and crack deflection at interfaces have been illustrated by experiments on rubber models and analysed by the energy balance theory of fracture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. , Galileo 1638 Two New Sciences (TranslatorS Drake, Wisconsin, University of Wisconsin Press 1974) p 19.Google Scholar
2. Field, J E & Freeman, C J Phil Mag 43, 595 (1981).Google Scholar
3. Johnson, K L, Kendall, K & Roberts, A D Proc R Soc (London) A 324, 301 (1971).Google Scholar
4. Stokes, R J in Fracture VII (ed Liebowitz, H) (London, Academic Press 1972) p157.Google Scholar
5. Kendall, K & Sherliker, F R Brit Poly J 12, 85 (1980).CrossRefGoogle Scholar
6. Hull, D An Introduction to Composite Materials (Cambridge, University Press 1981) p229.Google Scholar
7. Griffith, A A Phil Trans R Soc (London) A 221, 163 (1920).Google Scholar
8. Rivlin, R S Paint Technol 9, 215 (1944).Google Scholar
9. Kendall, K J Phys D:Appl Phys 4, 1186 (1971).CrossRefGoogle Scholar
10. Kendall, K J Phys D:Appl Phys 8, 1449 (1975).Google Scholar
11. Obreimoff, J W Proc R Soc (Lor-on) A 127, 290 (1930).Google Scholar
12. Lawn, B R & Wilshaw, T R Fracture of Brittle Solids (Cambridge, University Press 1975) p6 Google Scholar
13. Kendall, K J Adhesion 5, 179 (1973).Google Scholar
14. Kendall, K J Poly Sci Poly Phys 12, 295 (1973).Google Scholar
15. Kendall, K J Phys D:Appl Phys 6, 1782 (1973).Google Scholar
16. Kendall, K J Phys D:Appl Phys 8, 512 (1975).Google Scholar
17. Kendall, K J Phys D:Appl Phys 8, 1722 (1975).CrossRefGoogle Scholar
18. Kendall, K J Mater Sci 11. 1263 (1976).CrossRefGoogle Scholar
19. Kendall, K J Mater Sci 11, 1267 (1976).Google Scholar
20. Kendall, K Proc R Soc (London) A 361, 245 (1978).Google Scholar
21. Virkar, A V J Am Ceram Soc 66, C87 (1983).Google Scholar
22. Cook, T S & Erdogan, F Int J Eng Sci 10, 677 (1972)Google Scholar
23. Theocaris, P S & Milios, J Int J Solid Structures 217 (1981).Google Scholar
24. Kendall, K Proc R Soc (London) A 341, 409 (1975).Google Scholar
25. Kendall, K J Mat Sci 10, 1011 (1975).Google Scholar
26. Kendall, K Nature 261,35 (1976).Google Scholar
27. Kendall, K Phil Mag 36, 507 (1977).CrossRefGoogle Scholar
28. Kendall, K J Phys D Appl Phys 11, 1519 (1978).Google Scholar
29. Kendall, K to be published.Google Scholar
30. Kendall, K Phil Mag 43, 713 (1981).Google Scholar
31. Kendall, K Int J Adhision and Adhesives 303 (1981).Google Scholar
32. Cook, J & Gordon, J E Proc R Soc (London) A 282, 508 (1964).Google Scholar
33. Kendall, K Proc R Soc (London) A344, 287 (1975).Google Scholar