Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T11:14:35.627Z Has data issue: false hasContentIssue false

Formation of Ni/SiO2 and Ag/SiO2 Nanosphere Composites

Published online by Cambridge University Press:  17 March 2011

S. M. Prokes
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
W. E. Carlos
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Lenward Seals
Affiliation:
Georgia Institute of Technology, Atlanta, Ga. 30332-0430
Stephen Lewis
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
James L. Gole
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
Get access

Abstract

SiO2 nanospheres have been produced via a high temperature evaporation process and they have been Ni or Ag plated using electroless plating solutions. These samples were examined by Atomic Force Microscopy (AFM) and Magnetic Resonance (MR). The initial SiO2 nanospheres were about 30 nm in diameter, and the Ni plating layer resulted in a 25nm thick metallic Ni coverage, while the Ag coverage was estimated to be in the 150 nm range. In the case of the Ni/SiO2 nanosphere composites, the MR signals show the presence of Ni+2 and Ni+3 paramagnetic centers, seen below 40K, and ferromagnetic metallic Ni, which is seen above 40K. The dried Ni plating solution (with no SiO2) shows only the presence of paramagnetic Ni+3. These results suggest that an interfacial reaction at the surface of the SiO2 nanospheres leads to the formation of ferromagnetic Ni, which deposits onto the spheres and forms a ferromagnetic Ni/SiO2 nanosphere composite. In the case of the Ag/SiO2 nanosphere composites, no MR signal is seen from the non-magnetic Ag, but strong paramagnetic behavior has been noted for Co+2, which originates from the plating solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morales, A. M. and Lieber, C. M., Science 279, 208 (1998).Google Scholar
2. Wang, N., Zhang, Y. F., Yu, D. P., Lee, C. S., Bello, I., and Lee, S. T., Chem. Phys. Lett. 283, 368 (1998).Google Scholar
3. Wang, N., Zhang, Y. F., Tang, Y. H., Lee, C. S., and Lee, S. T., Appl. Phys. Lett. 73, 3902 (1998).Google Scholar
4. Gole, J. L., Stout, J. D., Rauch, W. L., and Wang, Z. L., Appl. Phys. Lett. 76, 2346 (2000).Google Scholar
5. Gao, R. P., Wang, Z. L., Stout, J. W., and Gole, J. L., Advanced Materials 12, 1938 (2000).Google Scholar
6. Tang, C. C., Fan, S. S., Dang, H. Y., Li, P., and Liu, Y. M., Appl. Phys. Lett. 77, 1961 (2000).Google Scholar
7. Liao, Yu-Cheng, Lin, Shih-Yen, Lee, Si-Chen, and Chia, Chih-Ta, Appl. Phys. Lett. 77, 4328 (2000).Google Scholar
8. Kane, S. M. and Gland, J. L., Surface Science 468, 101 (2000).Google Scholar
9. , Feng, , Chang-Dong, Ming, YuDong, Hesketh, Peter J., Gendel, Steven M., Setter, Joseph R., Sensors and Actuators B35, 431 (1996).Google Scholar
10. Isobe, Tetsuhiko, Weeks, Robert A., and Zuhr, Raymond A., Solid State Comm. 105, 469 (1998).Google Scholar
11. Wang, W., Guo, H. T., Gao, J. P., Dong, X. H., and Qin, Q. X., J. Materials Science 35, 1495 (2000).Google Scholar
12. Terrones, M., Grobert, N., Hsu, W. K., Zhu, Y. Q., Hu, W. B., Terrones, H., Hare, J. P., Kroto, H. W., and Walton, D. R. M., Materials Research Bull. 24, 43 (1999).Google Scholar
13. Himpsel, F. J., Jung, T., Kirakosian, A., Lin, J.-L., Petrovykh, D. Y., Rauscher, H., and Viernow, J., Materials Research Bull. 24, 20 (1999).Google Scholar
14. Prokes, S. M. and Glembocki, O. J., J. Vac. Sci. and Technol. A17, 1410 (1999).Google Scholar
15. Griscom, D. L., J. Non-Cryst. Solids 42, 287 (1980).Google Scholar
16. Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions, (Clarendon Press, Oxford, 1970) p. 487.Google Scholar
17. Fernandez, V., Vettier, C., Bergevin, F. de, Giles, C. and Neubeck, W., Phys. Rev. B 57, 7870 (1998).Google Scholar
18. Orton, J.W., Electron Paramagnetic Resonance: An Introduction to Transition Group Ions in Crystals, (Gordon and Breach Science Publishers, New York) 201.Google Scholar